Numpy | 02 Ndarray 对象
NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引。
ndarray 对象是用于存放同类型元素的多维数组。
ndarray 中的每个元素在内存中都有相同存储大小的区域。
ndarray 内部由以下内容组成:
一个指向数据(内存或内存映射文件中的一块数据)的指针。
数据类型或 dtype,描述在数组中的固定大小值的格子。
一个表示数组形状(shape)的元组,表示各维度大小的元组。
一个跨度元组(stride),其中的整数指的是为了前进到当前维度下一个元素需要"跨过"的字节数。
ndarray 的内部结构:

跨度可以是负数,这样会使数组在内存中后向移动,切片中 obj[::-1] 或 obj[:,::-1] 就是如此。
创建ndarray
只需调用 Numpy 的 array 函数即可:
numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)
参数说明:
| 名称 | 描述 |
|---|---|
| object | 数组或嵌套的数列 |
| dtype | 数组元素的数据类型,可选 |
| copy | 对象是否需要复制,可选 |
| order | 创建数组的样式,C为行方向,F为列方向,A为任意方向(默认) |
| subok | 默认返回一个与基类类型一致的数组 |
| ndmin | 指定生成数组的最小维度 |
实例 1
import numpy as np
a = np.array([1,2,3])
print (a)
输出结果如下:
[1, 2, 3]
实例 2
# 多于一个维度
import numpy as np
a = np.array([[1, 2], [3, 4]])
print (a)
输出结果如下:
[[1, 2]
[3, 4]]
实例 3
# 最小维度
import numpy as np
a = np.array([1, 2, 3,4,5], ndmin = 2)
print (a)
输出如下:
[[1, 2, 3, 4, 5]]
实例 4
# dtype 参数
import numpy as np
a = np.array([1, 2, 3], dtype = complex)
print (a)
输出结果如下:
[ 1.+0.j, 2.+0.j, 3.+0.j]
ndarray 对象由计算机内存的连续一维部分组成,并结合索引模式,将每个元素映射到内存块中的一个位置。内存块以行顺序(C样式)或列顺序(FORTRAN或MatLab风格,即前述的F样式)来保存元素。
Numpy | 02 Ndarray 对象的更多相关文章
- 第一节:numpy之ndarray对象数据类型及属性
- Numpy Ndarray对象
Numpy 最重要的一个特点是 N 维数组对象 ndarrary ,它是一系列同类型数据的集合,以 0 下标为开始进行集合中的索引. ndarray 对象是用于存放同类型元素的多维数组. ndarra ...
- 3.1Python数据处理篇之Numpy系列(一)---ndarray对象的属性与numpy的数据类型
目录 目录 (一)简单的数组创建 1.numpy的介绍: 2.numpy的数组对象ndarray: 3.np.array(list/tuple)创建数组: (二)ndarray对象的属性 1.五个常用 ...
- NumPy Ndarray 对象
NumPy Ndarray 对象 NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引. ndarray 对象是用于存放 ...
- NumPy-快速处理数据--ndarray对象--多维数组的存取、结构体数组存取、内存对齐、Numpy内存结构
本文摘自<用Python做科学计算>,版权归原作者所有. 上一篇讲到:NumPy-快速处理数据--ndarray对象--数组的创建和存取 接下来接着介绍多维数组的存取.结构体数组存取.内存 ...
- numpy模块(对矩阵的处理,ndarray对象)
6.12自我总结 一.numpy模块 import numpy as np约定俗称要把他变成np 1.模块官方文档地址 https://docs.scipy.org/doc/numpy/referen ...
- Numpy Ndarray对象1
标准安装的Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指 针.这样为了保存一个简单的[1,2,3],需要有3个指针和三 ...
- Lesson2——NumPy Ndarray 对象
NumPy 教程目录 NumPy Ndarray 对象 NumPy 最重要的一个特点是其 $N$ 维数组对象 ndarray,它是一系列同类型数据的集合,以 $0$ 下标为开始进行集合中元素的索引. ...
- [转]Numpy中矩阵对象(matrix)
numpy模块中的矩阵对象为numpy.matrix,包括矩阵数据的处理,矩阵的计算,以及基本的统计功能,转置,可逆性等等,包括对复数的处理,均在matrix对象中. class numpy.matr ...
随机推荐
- (一)pdf的数据类型
引自:https://blog.csdn.net/steve_cui/article/details/81912528 pdf的数据类型主要由8种 boolean(布尔型) :关键字为“ ...
- python selenium爬虫工具
今天seo的同事需要一个简单的爬虫工具, 根据一个url地址,抓取改页面的a连接,然后进入a连接里面的页面再次抓取a连接 1.需要一个全局的set([])集合来保存抓取的url地址 2.由于现在单页面 ...
- Vue,Javascript--时间戳的操作
new Date(parseInt(data.substring(6, data.length - 2))).toLocaleDateString(); 我这里的data记得替换成你的数据,在过滤器中 ...
- FindWindow和FindWindowEx函数使用
FindWindow( lpClassName, {窗口的类名} lpWindowName: PChar {窗口的标题} ): HWND; {返回窗口的 ...
- sql server union与unionALL区别
两种用法 一样, 查询字段类型需要一致 union 会自动去重 union all 不会去重 select name ,age from student union select name ,age ...
- Failed to execute goal org.apache.maven.plugins:maven-surefire-plugin:2.18.1
可以看出是 maven-surefire-plugin:2.18.1 插件问题,在网上寻找解决方案如下: <plugin> <groupId>org.apache.maven. ...
- asp.net core MVC 过滤器之ExceptionFilter过滤器(一)
简介 异常过滤器,顾名思义,就是当程序发生异常时所使用的过滤器.用于在系统出现未捕获异常时的处理. 实现一个自定义异常过滤器 自定义一个异常过滤器需要实现IExceptionFilter接口 publ ...
- python爬虫User Agent用户代理
UserAgent简介 UserAgent中文名为用户代理,是Http协议中的一部分,属于头域的组成部分,UserAgent也简称UA.它是一个特殊字符串头,是一种向访问网站提供你所使用的浏览器类型及 ...
- Content-Type属性的取值和作用
1.Content-Type 的值类型: 1.1 application/json:消息主体是序列化后的 JSON 字符串 1.2 application/x-www-form-urlencoded: ...
- SpringBoot,SSM和SSH
Springboot的概念: 是提供的全新框架,使用来简化Spring的初始搭建和开发过程,使用了特定的方式来进行配置,让开发人员不在需要定义样板化的配置.此框架不需要配置xml,依赖于想MAVEN这 ...