「模拟赛20191019」B 容斥原理+DP计数
题目描述
将\(n\times n\)的网格黑白染色,使得不存在任意一行、任意一列、任意一条大对角线的所有格子同色,求方案数对\(998244353\)取模的结果。
输入
一行一个整数\(n\)。
输出
一行一个整数表示答案对\(998244353\)取模的值。
样例
样例输入
3
样例输出
32
数据范围
对于\(100\%\)的数据,\(1\leq n\leq 300\)。
比第一题难了不知道多少……
这种东西怎么看都是容斥嘛。
我们先考虑对角线没有限制的情况:
枚举行和列有多少个是同色的,若行+列是奇数,则减去方案数,若行+列是偶数,则加上方案数,其他没有限制的点任意选,容斥一波即可(注意,若既有行又有列,则只能是同一颜色;但如果只有行或只有列则可以随意指定颜色,方案数应随之变动)。
那么有对角线该怎么办?
仍然容斥,\(0\)条对角线-\(1\)条对角线+\(2\)条对角线即是最终答案。其中\(0\)条对角线就是上述的算法。
考虑\(1\)条对角线的情况,不妨设是主对角线,令\(f_{i,j,k}\)表示考虑到前\(i\)行\(i\)列,选中了\(j\)行\(k\)列的方案数。然后考虑转移到\(i+1\),则枚举选\(0/1\)行,\(0/1\)列,分别转移。但是会存在一个问题,如果既没有选择行又没有选择列,会导致判断\((i,i)\)这个格子可以任选,但事实上主对角线被锁死了,所以要乘上\(\frac{1}{2}\)的系数。最后\(DP\)完后再根据\(j+k\)的奇偶性确定容斥系数,然后再乘上\(2^{(n-j)(n-k)}\)的系数表示未被考虑的格子的方案。
然后考虑\(2\)条对角线的情况,类似\(1\)条对角线,只是变成从中心开始一圈一圈往外\(DP\),讨论的情况更多(并且要特判,奇数的时候两条对角线颜色必须一样,偶数的时候两条对角线颜色不必一样),就没有什么差别了。
\(Code:\)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define ll long long
#define mod 998244353
#define inv2 499122177
#define inv16 935854081
int n, f[2][305][305];
int C[305][305], mul[100005];
void Add(int &a, int b){a = (a + b) % mod;}
int Solve0()
{
int ans = 0;
for (int i = 0; i <= n; i++)
for (int j = 0; j <= n; j++)
{
int k;
if (!i || !j)
k = i ^ j;
else
k = 1;
int x = (n - i) * (n - j) + k;
ans = (ans + (ll)C[n][i] * C[n][j] % mod * mul[x] % mod * (1 - (i + j) % 2 * 2) % mod) % mod;
}
return ans;
}
int Solve1()
{
memset(f, 0, sizeof(f));
int z = 0;
f[0][0][0] = 2;
for (int i = 0; i < n; i++)
{
for (int j = 0; j <= i; j++)
{
for (int k = 0; k <= i; k++)
{
Add(f[z ^ 1][j][k], (ll)f[z][j][k] * inv2 % mod);
Add(f[z ^ 1][j][k + 1], -f[z][j][k]);
Add(f[z ^ 1][j + 1][k], -f[z][j][k]);
Add(f[z ^ 1][j + 1][k + 1], f[z][j][k]);
f[z][j][k] = 0;
}
}
z ^= 1;
}
int ans = 0;
for (int i = 0; i <= n; i++)
for (int j = 0; j <= n; j++)
Add(ans, (ll)f[z][i][j] * mul[(n - i) * (n - j)] % mod);
return ans;
}
int Solve2()
{
memset(f, 0, sizeof(f));
int z = 0;
if (n & 1)
{
f[0][0][0] = 1;
f[0][0][1] = f[0][1][0] = -2;
f[0][1][1] = 2;
}
else
f[0][0][0] = 2;
for (int k = n & 1; k < n; k += 2)
{
for (int i = 0; i <= k; i++)
{
for (int j = 0; j <= k; j++)
{
Add(f[z ^ 1][i][j], (ll)f[z][i][j] * inv16 % mod);
Add(f[z ^ 1][i + 1][j], -(ll)f[z][i][j] * inv2 % mod);
Add(f[z ^ 1][i][j + 1], -(ll)f[z][i][j] * inv2 % mod);
Add(f[z ^ 1][i + 2][j], f[z][i][j]);
Add(f[z ^ 1][i][j + 2], f[z][i][j]);
Add(f[z ^ 1][i + 2][j + 1], -(ll)f[z][i][j] * 2ll % mod);
Add(f[z ^ 1][i + 1][j + 2], -(ll)f[z][i][j] * 2ll % mod);
Add(f[z ^ 1][i + 1][j + 1], f[z][i][j] * 2ll % mod);
Add(f[z ^ 1][i + 2][j + 2], f[z][i][j]);
f[z][i][j] = 0;
}
}
z ^= 1;
}
int ans = 0;
for (int i = 0; i <= n; i++)
for (int j = 0; j <= n; j++)
if (!j && !i && (!(n & 1)))
Add(ans, mul[n * (n - 2) + 2]);
else
Add(ans, (ll)f[z][i][j] * mul[(n - i) * (n - j)] % mod);
return ans;
}
int main()
{
scanf("%d", &n);
C[0][0] = 1;
for (int i = 1; i <= n; i++)
{
C[i][0] = 1;
for (int j = 1; j <= i; j++)
C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % mod;
}
mul[0] = 1;
for (int i = 1; i <= n * n + 1; i++)
mul[i] = mul[i - 1] * 2 % mod;
int ans = Solve0();
ans = (ans - 2ll * Solve1()) % mod;
ans = (ans + Solve2()) % mod;
if (ans < 0)ans += mod;
printf("%d\n", ans);
}
「模拟赛20191019」B 容斥原理+DP计数的更多相关文章
- 「模拟赛20191019」A 简单DP
题目描述 给一个\(n\times m\)的网格,每个格子上有一个小写字母. 对于所有从左上角\((1,1)\)到右下角\((n,m)\)只向下或向右走的路径构成的集合,判断是否存在两条走法不同的路径 ...
- 「模拟赛20190327」 第二题 DP+决策单调性优化
题目描述 小火车虽然很穷,但是他还是得送礼物给妹子,所以他前往了二次元寻找不需要钱的礼物. 小火车准备玩玩二次元的游戏,游戏当然是在一个二维网格中展开的,网格大小是\(n\times m\)的,某些格 ...
- 「模拟赛20191019」C 推式子+贪心+树状数组
题目描述 给定一棵\(n\)个点的有根树,根节点编号为\(1\),点有点权. 定义\(d(v)\)表示\(v\)到\(1\)的路径上的边数. 定义\(f(v,u)\)在\(v<u\)且\(v\) ...
- 「模拟赛20181025」御风剑术 博弈论+DP简单优化
题目描述 Yasuo 和Riven对一排\(n\)个假人开始练习.斩杀第\(i\)个假人会得到\(c_i\)个精粹.双方轮流出招,他们在练习中互相学习,所以他们的剑术越来越强.基于对方上一次斩杀的假人 ...
- 「模拟赛20180306」回忆树 memory LCA+KMP+AC自动机+树状数组
题目描述 回忆树是一棵树,树边上有小写字母. 一次回忆是这样的:你想起过往,触及心底--唔,不对,我们要说题目. 这题中我们认为回忆是这样的:给定 \(2\) 个点 \(u,v\) (\(u\) 可能 ...
- 「模拟赛 2018-11-02」T3 老大 解题报告
老大 题目描述 因为 OB 今年拿下 4 块金牌,学校赞助扩建劳模办公室为劳模办公室群,为了体现 OI 的特色,办公室群被设计成了树形(n 个点 n − 1 条边的无向连通图),由于新建的办公室太大以 ...
- 「模拟赛20180406」膜树 prufer编码+概率
题目描述 给定一个完全图,保证\(w_{u,v}=w_{v,u}\)且\(w_{u,u}=0\),等概率选取一个随机生成树,对于每一对\((u,v)\),求\(dis(u,v)\)的期望值对\(998 ...
- 「模拟赛20180307」三元组 exclaim 枚举+树状数组
题目描述 给定 \(n,k\) ,求有多少个三元组 \((a,b,c)\) 满足 \(1≤a≤b≤c≤n\)且\(a + b^2 ≡ c^3\ (mod\ k)\). 输入 多组数据,第一行数据组数\ ...
- 6.28 NOI模拟赛 好题 状压dp 随机化
算是一道比较新颖的题目 尽管好像是两年前的省选模拟赛题目.. 对于20%的分数 可以进行爆搜,对于另外20%的数据 因为k很小所以考虑上状压dp. 观察最后答案是一个连通块 从而可以发现这个连通块必然 ...
随机推荐
- Laravel —— 特殊分页
项目中,分页经常会用到. Laravel 中也自带了分页功能. 但有些时候需要稍作修改,来满足自己的需求. 一.普通分页 1.控制器中,用 paginate() 方法. $users = DB::ta ...
- strtok在keil中使用小笔记及字符串转换为多个浮点数的方法
在pc上面使用这个字符串函数,是没有问题的,但是我在keil中结合rtos来处理字符串的时候,比如char *s = "1.01313;17.2609;17.4875";那么就只能 ...
- janusgraph-创建索引出现GraphIndexStatusReport[success=false, indexName='mixedvlabel', targetStatus=[REGISTERED], notConverged={vlabel=INSTALLED}, converged={}, elapsed=PT1M0.07S]
参考网址: https://www.cnblogs.com/Uglthinx/p/9630779.html 原因:我的是事务没有完全关闭 解决办法: 创建一个混合索引: // 在graph中有事务执行 ...
- [51Nod 1220] - 约数之和 (杜教筛)
题面 令d(n)d(n)d(n)表示nnn的约数之和求 ∑i=1n∑j=1nd(ij)\large\sum_{i=1}^n\sum_{j=1}^nd(ij)i=1∑nj=1∑nd(ij) 题目分析 ...
- fitnesse wiki界面设置变量
有时候我们可能多组测试数据会到同一个值,这样我们就可以设置一个变量,修改时只需要修改一个地方即可,而不需要对每组测试数据的这列数据进行修改 如下图: (1)定义变量:!define A {10} , ...
- L1731
生日蛋糕 输入的东西,一个是蛋糕的体积,一个是蛋糕的层数, 简言之,我觉得这个就是两个dfs的状态. 一旦越过这两个就得return ,同时这两个东西也参与进去了dfs. 至于题目, 第一个要求是层数 ...
- oracle 按每天,每周,每月,每季度,每年查询统计数据
oracle 按每天,每周,每月,每季度,每年查询统计数据 //按天统计 select count(dataid) as 每天操作数量, sum() from tablename group by t ...
- 看图轻松理解数据结构与算法系列(NoSQL存储-LSM树) - 全文
<看图轻松理解数据结构和算法>,主要使用图片来描述常见的数据结构和算法,轻松阅读并理解掌握.本系列包括各种堆.各种队列.各种列表.各种树.各种图.各种排序等等几十篇的样子. 关于LSM树 ...
- ESP8266低功耗解决的其中一个问题(芯片发热,影响旁边的温湿度芯片)
这个项目的这个问题困扰了自己好长时间了,ESP8266芯片发热,导致了旁边的温湿度传感器采集不了空气中的温度....采集的温度是芯片发热的温度 一直采集出来的是30多度......尽管空气温度10几度 ...
- 【JZOJ6223】【20190617】互膜
题目 小\(A\)和小\(B\)在一个长度为\(2n\)的数组上面博弈,初始时奇数位置为A,偶数位置为B 小\(A\)先手,第\(i\)次操作的人可以将\(i\)或者\(i+1\)位置的值反转(也可以 ...