直观的理解:
Batch Size定义:一次训练所选取的样本数。
Batch Size的大小影响模型的优化程度和速度。同时其直接影响到GPU内存的使用情况,假如你GPU内存不大,该数值最好设置小一点。

为什么要提出Batch Size?
在没有使用Batch Size之前,这意味着网络在训练时,是一次把所有的数据(整个数据库)输入网络中,然后计算它们的梯度进行反向传播,由于在计算梯度时使用了整个数据库,所以计算得到的梯度方向更为准确。但在这情况下,计算得到不同梯度值差别巨大,难以使用一个全局的学习率,所以这时一般使用Rprop这种基于梯度符号的训练算法,单独进行梯度更新。
在小样本数的数据库中,不使用Batch Size是可行的,而且效果也很好。但是一旦是大型的数据库,一次性把所有数据输进网络,肯定会引起内存的爆炸。所以就提出Batch Size的概念。

Batch Size设置合适时的优点:
1、通过并行化提高内存的利用率。就是尽量让你的GPU满载运行,提高训练速度。
2、单个epoch的迭代次数减少了,参数的调整也慢了,假如要达到相同的识别精度,需要更多的epoch。
3、适当Batch Size使得梯度下降方向更加准确。

Batch Size从小到大的变化对网络影响
1、没有Batch Size,梯度准确,只适用于小样本数据库
2、Batch Size=1,梯度变来变去,非常不准确,网络很难收敛。
3、Batch Size增大,梯度变准确,
4、Batch Size增大,梯度已经非常准确,再增加Batch Size也没有用

注意:Batch Size增大了,要到达相同的准确度,必须要增大epoch。

GD(Gradient Descent):就是没有利用Batch Size,用基于整个数据库得到梯度,梯度准确,但数据量大时,计算非常耗时,同时神经网络常是非凸的,网络最终可能收敛到初始点附近的局部最优点。

SGD(Stochastic Gradient Descent):就是Batch Size=1,每次计算一个样本,梯度不准确,所以学习率要降低。

mini-batch SGD:就是选着合适Batch Size的SGD算法,mini-batch利用噪声梯度,一定程度上缓解了GD算法直接掉进初始点附近的局部最优值。同时梯度准确了,学习率要加大。
版权声明:本文为CSDN博主「Star_ACE」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_34886403/article/details/82558399

神经网络中Batch Size的理解的更多相关文章

  1. 机器学习中Batch Size、Iteration和Epoch的概念

    Batch Size:批尺寸.机器学习中参数更新的方法有三种: (1)Batch Gradient Descent,批梯度下降,遍历全部数据集计算一次损失函数,进行一次参数更新,这样得到的方向能够更加 ...

  2. 神经网络中batch_size参数的含义及设置方法

    本文作者Key,博客园主页:https://home.cnblogs.com/u/key1994/ 本内容为个人原创作品,转载请注明出处或联系:zhengzha16@163.com 在进行神经网络训练 ...

  3. 一文读懂神经网络训练中的Batch Size,Epoch,Iteration

    一文读懂神经网络训练中的Batch Size,Epoch,Iteration 作为在各种神经网络训练时都无法避免的几个名词,本文将全面解析他们的含义和关系. 1. Batch Size 释义:批大小, ...

  4. 怎么选取训练神经网络时的Batch size?

    怎么选取训练神经网络时的Batch size? - 知乎 https://www.zhihu.com/question/61607442 深度学习中的batch的大小对学习效果有何影响? - 知乎 h ...

  5. Batch Size对神经网络训练的影响

    ​ 前言 这篇文章非常全面细致地介绍了Batch Size的相关问题.结合一些理论知识,通过大量实验,文章探讨了Batch Size的大小对模型性能的影响.如何影响以及如何缩小影响等有关内容. 本文来 ...

  6. 神经网络中Epoch、Iteration、Batchsize相关理解

    batch 深度学习的优化算法,说白了就是梯度下降.每次的参数更新有两种方式. 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度.这种方法每更新一次参数都要把数据集里的所有样 ...

  7. Batch Normalization原理及其TensorFlow实现——为了减少深度神经网络中的internal covariate shift,论文中提出了Batch Normalization算法,首先是对”每一层“的输入做一个Batch Normalization 变换

    批标准化(Bactch Normalization,BN)是为了克服神经网络加深导致难以训练而诞生的,随着神经网络深度加深,训练起来就会越来越困难,收敛速度回很慢,常常会导致梯度弥散问题(Vanish ...

  8. Spark Streaming中动态Batch Size实现初探

    本期内容 : BatchDuration与 Process Time 动态Batch Size Spark Streaming中有很多算子,是否每一个算子都是预期中的类似线性规律的时间消耗呢? 例如: ...

  9. 连接字符串中Min Pool Size的理解是错误,超时时间已到,但是尚未从池中获取连接。出现这种情况可能是因为所有池连接均在使用,并且达到了最大池大小。

    Min Pool Size的理解是错误的 假设我们在一个ASP.NET应用程序的连接字符串中将Min Pool Size设置为30: <add name="cnblogs" ...

随机推荐

  1. netcore与ef资料收集

    http://www.cnblogs.com/cgzl/p/7661805.html https://www.cnblogs.com/cgzl/p/7675485.html https://www.c ...

  2. CentOS7 Hbase 安装(完全分布式)

    安装前准备 hadoop安装 zookeeper安装 安装步骤 1.下载 $ wget http://mirror.bit.edu.cn/apache/hbase/2.0.5/hbase-2.0.5- ...

  3. CentOS7 Hive 安装

    hive的安装模式有2种,一种是使用自带的derby数据库,另一种是使用mysql作为元数据库.derby方式一般没人用,因为它是单用户模式.这里主要讲解mysql方式. hive仅仅是一个客户端工具 ...

  4. PowerShell的异常处理办法

    $ErrorActionPreference = 'Stop' Try{     # C:\xxx 不存在     Copy-Item C:\xxx -ErrorAction Stop } Catch ...

  5. 一篇了解大数据架构及Hadoop生态圈

    一篇了解大数据架构及Hadoop生态圈 阅读建议,有一定基础的阅读顺序为1,2,3,4节,没有基础的阅读顺序为2,3,4,1节. 第一节 集群规划 大数据集群规划(以CDH集群为例),参考链接: ht ...

  6. mybatis 的 dao 接口跟 xml 文件里面的 sql 是如何建立关系的?

    mybatis 会先解析这些xml 文件,通过 xml 文件里面的命名空间 (namespace)跟dao 建立关系:然后 xml 中的每段 sql 会有一个id 跟 dao 中的接口进行关联. 那么 ...

  7. linux centos安装教程

    linux centos安装教程1 CentOS-7-x86_64-DVD-1511.iso 这个是dvd版本 2 CentOS-7-x86_64-Minimal-1511.iso 这个迷你版 是没有 ...

  8. Asp.Net、API 、MVC、 PUT/DELETE 报405错解决办法

    本地put/delete能正常运行,但是部署在服务器就 报webapi method not allowed 405的错误 解决方案就是在Web.config里面加入如下设置: <system. ...

  9. 优先队列 + 模拟 - HDU 5437 Alisha’s Party

    Alisha’s Party Problem's Link Mean: Alisha过生日,有k个朋友来参加聚会,由于空间有限,Alisha每次开门只能让p个人进来,而且带的礼物价值越高就越先进入. ...

  10. RESTful API 最佳实践(转)

    原文:http://www.ruanyifeng.com/blog/2018/10/restful-api-best-practices.html 阮一峰老师的文章,他的文章把难懂的东西讲的易懂 RE ...