Pandas统计函数
统计方法有助于理解和分析数据的行为。现在我们将学习一些统计函数,可以将这些函数应用到Pandas的对象上。
pct_change()函数
系列,DatFrames和Panel都有pct_change()函数。此函数将每个元素与其前一个元素进行比较,并计算变化百分比。
import pandas as pd
import numpy as np
s = pd.Series([1,2,3,4,5,4])
print (s.pct_change())
df = pd.DataFrame(np.random.randn(5, 2))
print (df.pct_change())
执行上面示例代码,得到以下结果 -
0 NaN
1 1.000000
2 0.500000
3 0.333333
4 0.250000
5 -0.200000
dtype: float64
0 1
0 NaN NaN
1 -15.151902 0.174730
2 -0.746374 -1.449088
3 -3.582229 -3.165836
4 15.601150 -1.860434
默认情况下,pct_change()对列进行操作; 如果想应用到行上,那么可使用axis = 1参数。
协方差
协方差适用于系列数据。Series对象有一个方法cov用来计算序列对象之间的协方差。NA将被自动排除。
Cov系列示例
import pandas as pd
import numpy as np
s1 = pd.Series(np.random.randn(10))
s2 = pd.Series(np.random.randn(10))
print (s1.cov(s2))
执行上面示例代码,得到以下结果 -
0.0667296739178
当应用于DataFrame时,协方差方法计算所有列之间的协方差(cov)值。
import pandas as pd
import numpy as np
frame = pd.DataFrame(np.random.randn(10, 5), columns=['a', 'b', 'c', 'd', 'e'])
print (frame['a'].cov(frame['b']))
print (frame.cov())
执行上面示例代码,得到以下结果 -
-0.406796939839
a b c d e
a 0.784886 -0.406797 0.181312 0.513549 -0.597385
b -0.406797 0.987106 -0.662898 -0.492781 0.388693
c 0.181312 -0.662898 1.450012 0.484724 -0.476961
d 0.513549 -0.492781 0.484724 1.571194 -0.365274
e -0.597385 0.388693 -0.476961 -0.365274 0.785044
注 - 观察第一个语句中
a和b列之间的cov结果值,与由DataFrame上的cov返回的值相同。
相关性
相关性显示了任何两个数值(系列)之间的线性关系。有多种方法来计算pearson(默认),spearman和kendall之间的相关性。
import pandas as pd
import numpy as np
frame = pd.DataFrame(np.random.randn(10, 5), columns=['a', 'b', 'c', 'd', 'e'])
print (frame['a'].corr(frame['b']))
print (frame.corr())
执行上面示例代码,得到以下结果 -
-0.613999376618
a b c d e
a 1.000000 -0.613999 -0.040741 -0.227761 -0.192171
b -0.613999 1.000000 0.012303 0.273584 0.591826
c -0.040741 0.012303 1.000000 -0.391736 -0.470765
d -0.227761 0.273584 -0.391736 1.000000 0.364946
e -0.192171 0.591826 -0.470765 0.364946 1.000000
如果DataFrame中存在任何非数字列,则会自动排除。
数据排名
数据排名为元素数组中的每个元素生成排名。在关系的情况下,分配平均等级。
import pandas as pd
import numpy as np
s = pd.Series(np.random.np.random.randn(5), index=list('abcde'))
s['d'] = s['b'] # so there's a tie
print (s.rank())
执行上面示例代码,得到以下结果 -
a 4.0
b 1.5
c 3.0
d 1.5
e 5.0
dtype: float64
Rank可选地使用一个默认为true的升序参数; 当错误时,数据被反向排序,也就是较大的值被分配较小的排序。
Rank支持不同的tie-breaking方法,用方法参数指定 -
average- 并列组平均排序等级min- 组中最低的排序等级max- 组中最高的排序等级first- 按照它们出现在数组中的顺序分配队列
Pandas统计函数的更多相关文章
- 第十一节:pandas统计函数
1.pct_change()计算增长比例 2.cov()协方差 3.corr()相关系数 4.rank()数据排名 5.numpy聚合函数
- Pandas学习笔记(三)
(1)系列对象( Series)基本功能 编号 属性或方法 描述 1 axes 返回行轴标签列表. 2 dtype 返回对象的数据类型(dtype). 3 empty 如果系列为空,则返回True. ...
- pandas使用总结
一.pandas简介 Pandas是基于Numpy开发出的,是一款开放源码的BSD许可的Python库,为Python编程语言提供了高性能,易于使用的数据结构和数据分析工具.Pandas用于广泛的领域 ...
- Pandas教程目录
Pandas数据结构 Pandas系列 Pandas数据帧(DataFrame) Pandas面板(Panel) Pandas基本功能 Pandas描述性统计 Pandas函数应用 Pandas重建索 ...
- Python人工智能学习笔记
Python教程 Python 教程 Python 简介 Python 环境搭建 Python 中文编码 Python 基础语法 Python 变量类型 Python 运算符 Python 条件语句 ...
- Pandas分组统计函数:groupby、pivot_table及crosstab
利用python的pandas库进行数据分组分析十分便捷,其中应用最多的方法包括:groupby.pivot_table及crosstab,以下分别进行介绍. 0.样例数据 df = DataFram ...
- Pandas | 14 统计函数
统计方法有助于理解和分析数据的行为.可以将这些统计函数应用到Pandas的对象上. pct_change()函数 系列,DatFrames和Panel都有pct_change()函数.此函数将每个元素 ...
- Pandas数据统计函数
Pandas数据统计函数 汇总类统计 唯一去重和按值计数 相关系数和协方差 0.读取csv数据 1.汇总类统计 2.唯一去重和按值计数 2.1 唯一性去重 一般不用于数值列,而是枚举.分类列 2.2 ...
- pandas的数据统计函数
# 1汇总类统计 # 2唯一去重和按值计数 # 3 相关系数和协方差 import pandas as pd # 0 读取csv数据 df = pd.read_csv("beijing_ti ...
随机推荐
- angualar入门学习-- 自定义指令 认识属性
个AngularJS指令在HTML代码中可以有四种表现形式: 1.作为一个新的HTML元素来使用 2.作为一个元素的属性来使用 3.作为一个元素的类来使用 4.作为注释来使用 一.创建指令 angul ...
- 160712、Dubbo与Zookeeper、SpringMVC整合和使用(负载均衡、容错)
互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架构以及流动计算架构势在必行,Dubbo是一个分布式服务框架,在这种情况下诞生的.现在核心业务抽取出来,作为独立的服务,使 ...
- 网站漏洞扫描工具(appscan,mdcsoft-ips)
网站漏洞扫描工具:主要应用网站漏洞扫描工具,其原理是通过工具通过对网站的代码阅读,发现其可被利用的漏洞进行告示,通过前人收集的漏洞编成数据库,根据其扫描对比做出. 具体网站扫描工具有:appscan, ...
- IO 包中的其他类
打印流 PrintWriter 和 PrintWriter 直接操作输入流和文件 序列流 SequenceInputStream 对多个输入流进行合并 操作对象 ObjectInputStream 和 ...
- 000 初步使用Kotlin开发Android应用
Kotlin是Jetbrians公司开发的一款编程语言,基于jvm兼容Java. 要求 IDE:IDEA或者Android Studio(简称studio)对Kotlin语言有所了解,官方文档:htt ...
- 关于 sql server 基本使用的建议
1. 把现有的表插入到新表,(表不能存在),为表备份. -- select * into NewTable from OldTable (NewTable 在select 查询的 ...
- StringBuilder String string.Concat 字符串拼接速度
首先看测试代码: public class StringSpeedTest { "; public string StringAdd(int count) { string str = st ...
- React:快速上手(5)——掌握Redux(2)
React:快速上手(5)——掌握Redux(2) 本文部分内容参考阮一峰的Redux教程. React-Redux原理 React-Redux运行机制 我觉得这张图清楚地描述React-Redux的 ...
- LeetCode:括号的分数【856】
LeetCode:括号的分数[856] 题目描述 给定一个平衡括号字符串 S,按下述规则计算该字符串的分数: () 得 1 分. AB 得 A + B 分,其中 A 和 B 是平衡括号字符串. (A) ...
- mapreduce编程--(准备篇)
mapreduce编程准备 学习mapreduce编程之前需要做一些概念性的了解,这是做的一些课程学习笔记,以便以后时不时的翻出来学习下,之前看过一篇文章大神们都是时不时的翻出基础知识复习下,我也做点 ...