Lucky7

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Problem Description
When
?? was born, seven crows flew in and stopped beside him. In its
childhood, ?? had been unfortunately fall into the sea. While it was
dying, seven dolphins arched its body and sent it back to the shore. It
is said that ?? used to surrounded by 7 candles when he faced a
extremely difficult problem, and always solve it in seven minutes.
??
once wrote an autobiography, which mentioned something about himself.
In his book, it said seven is his favorite number and he thinks that a
number can be divisible by seven can bring him good luck. On the other
hand, ?? abhors some other prime numbers and thinks a number x divided
by pi which is one of these prime numbers with a given remainder ai will
bring him bad luck. In this case, many of his lucky numbers are
sullied because they can be divisible by 7 and also has a remainder of
ai when it is divided by the prime number pi.
Now give you a pair of x
and y, and N pairs of ai and pi, please find out how many numbers
between x and y can bring ?? good luck.
 
Input
On the first line there is an integer T(T≤20) representing the number of test cases.
Each test case starts with three integers three intergers n, x, y(0<=n<=15,0<x<y<1018) on a line where n is the number of pirmes.
Following
on n lines each contains two integers pi, ai where pi is the pirme and
?? abhors the numbers have a remainder of ai when they are divided by
pi.
It is guranteed that all the pi are distinct and pi!=7.
It is also guaranteed that p1*p2*…*pn<=1018 and 0<ai<pi<=105for every i∈(1…n).
 
Output
For each test case, first output "Case #x: ",x=1,2,3...., then output the correct answer on a line.
 
Sample Input
2
2 1 100
3 2
5 3
0 1 100
 
Sample Output
Case #1: 7
Case #2: 14

Hint

For Case 1: 7,21,42,49,70,84,91 are the seven numbers.
For Case2: 7,14,21,28,35,42,49,56,63,70,77,84,91,98 are the fourteen numbers.

 
Author
FZU
 
Source

2016 Multi-University Training Contest 4

思路:套一个中国剩余定理两两不互质的模版;

    容斥一发。。。由于犯了一个sb错,wa一天,不想说什么了;

  

1005  Lucky7

因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题。当我们选定了一系列pi和ai后,题意转化为求 [x,y]中被7整除余0,且被这一系列pi除余ai的数的个数,可以看成若干个同余方程联立成的一次同余方程组。然后我们就可以很自然而然的想到了中国 剩余定理。需要注意的是,在处理中国剩余定理的过程中,可能会发生超出LongLong的情况,需要写个类似于快速幂的快速乘法来处理。

二进制枚举:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll __int64
#define esp 0.00000000001
const int N=1e2+,M=1e6+,inf=1e9+,mod=;
ll a[N];
ll b[N];
ll p[N];
ll m[N];
ll mulmod(ll x,ll y,ll m)
{
ll ans=;
while(y)
{
if(y%)
{
ans+=x;
ans%=m;
}
x+=x;
x%=m;
y/=;
}
ans=(ans+m)%m;
return ans;
}
void exgcd(ll a, ll b, ll &x, ll &y)
{
if(b == )
{
x = ;
y = ;
return;
}
exgcd(b, a % b, x, y);
ll tmp = x;
x = y;
y = tmp - (a / b) * y;
}
ll CRT(ll a[],ll m[],ll n)
{
ll M = ;
ll ans = ;
for(ll i=; i<n; i++)
M *= m[i];
for(ll i=; i<n; i++)
{
ll x, y;
ll Mi = M / m[i];
exgcd(Mi, m[i], x, y);
//ans = (ans + Mi * x * a[i]) % M;
ans = (ans +mulmod( mulmod( x , Mi ,M ), a[i] , M ) ) % M;
}
ans=(ans + M )% M;
return ans;
}
int main()
{
ll x,y,z,i,t;
int T,cas=;
scanf("%d",&T);
while(T--)
{
scanf("%I64d%I64d%I64d",&x,&y,&z);
for(i=;i<=x;i++)
scanf("%I64d%I64d",&b[i],&a[i]);
ll ans=;
for(i=;i<(<<x);i++)
{
ll cnt=,mul=;
p[cnt]=;
m[cnt++]=;
for(int ji=,t=i;t>;t>>=,ji++)
if(t&)mul*=b[ji],p[cnt]=a[ji],m[cnt++]=b[ji];
ll pp=CRT(p,m,cnt);
if(cnt&)
ans+=z/mul+(z%mul>=pp)-((y-)/mul+(((y-)%mul)>=pp));
else
ans-=z/mul+(z%mul>=pp)-((y-)/mul+(((y-)%mul)>=pp));
}
printf("Case #%d: %I64d\n",cas++,ans);
}
return ;
}

dfs写法:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll __int64
#define esp 0.00000000001
const int N=1e2+,M=1e6+,inf=1e9+,mod=;
ll a[N];
ll b[N];
ll ji;
ll mulmod(ll x,ll y,ll m)
{
ll ans=;
while(y)
{
if(y%)
{
ans+=x;
ans%=m;
}
x+=x;
x%=m;
y/=;
}
ans=(ans+m)%m;
return ans;
}
void exgcd(ll a, ll b, ll &x, ll &y)
{
if(b == )
{
x = ;
y = ;
return;
}
exgcd(b, a % b, x, y);
ll tmp = x;
x = y;
y = tmp - (a / b) * y;
}
ll CRT(ll p,ll m,ll k,ll l)
{
ll M = m * l;
ll ans = ;
ll x, y;
ll Mi = l;
exgcd(Mi, m, x, y);
ans = (ans + mulmod( mulmod( x%M, Mi%M, M) , p%M , M))% M;
Mi = m;
exgcd(Mi, l, x, y);
ans = (ans + mulmod( mulmod(x%M ,Mi%M , M) , k%M, M))% M;
if(ans < ) ans += M;
return ans;
}
void dfs(ll p,ll m,ll pos,ll step,ll x,ll &ans)
{
if(pos==ji)
{
if(step%)
{
ans-=x/m;
if(x%m>=p)
ans--;
}
else
{
ans+=(x/m);
if(x%m>=p)
ans++;
}
return;
}
dfs(CRT(p,m,a[pos],b[pos]),m*b[pos],pos+,step+,x,ans);
dfs(p,m,pos+,step,x,ans);
}
int main()
{
ll x,y,z,i,t;
int T,cas=;
scanf("%d",&T);
while(T--)
{
scanf("%I64d%I64d%I64d",&x,&y,&z);
ji=x;
for(i=; i<x; i++)
scanf("%I64d%I64d",&b[i],&a[i]);
ll ansr=,ansl=;
dfs(,,,,z,ansr);
dfs(,,,,y-,ansl);
printf("Case #%d: %I64d\n",cas++,ansr-ansl);
}
return ;
}

hdu 5768 Lucky7 中国剩余定理+容斥+快速乘的更多相关文章

  1. HDU 5768 Lucky7 (中国剩余定理+容斥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5768 给你n个同余方程组,然后给你l,r,问你l,r中有多少数%7=0且%ai != bi. 比较明显 ...

  2. HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)

    Lucky7 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...

  3. hdu_5768_Lucky7(中国剩余定理+容斥)

    题目链接:hdu_5768_Lucky7 题意: 给你一个区间,问你这个区间内是7的倍数,并且满足%a[i]不等于w[i]的数的个数 乍一看以为是数位DP,仔细看看条件,发现要用中国剩余定理,然后容斥 ...

  4. HDU5768Lucky7(中国剩余定理+容斥定理)(区间个数统计)

    When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortun ...

  5. 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai  的数 ...

  6. hdu 5768 Lucky7 容斥

    Lucky7 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...

  7. HDU 5768 Lucky7 容斥原理+中国剩余定理(互质)

    分析: 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题.当我们选定了一系列pi和ai后,题意转化为求[x,y]中被7整除余0,且被这一系列pi除余ai的 ...

  8. HDU 5768 Lucky7 (容斥原理 + 中国剩余定理 + 状态压缩 + 带膜乘法)

    题意:……应该不用我说了,看起来就很容斥原理,很中国剩余定理…… 方法:因为题目中的n最大是15,使用状态压缩可以将所有的组合都举出来,然后再拆开成数组,进行中国剩余定理的运算,中国剩余定理能够求出同 ...

  9. HDU 5768 Lucky7(CRT+容斥原理)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5768 [题目大意] 求出一个区间内7的倍数中,对于每个ai取模不等于bi的数的个数. [题解] 首 ...

随机推荐

  1. delphi ----Raize(第三方控件) TRzNumericEdit

    一.Raize Edits 1.TRzNumericEdit IntegerOnly属性设置为false,可以输入小数. DisplayFormat := ',0.00;(,0.00)';;//小数默 ...

  2. Apache Lucene评分机制的内部工作原理

    Apache Lucene评分机制的内部工作原理' 第5章

  3. slurm使用

    官方文档:https://slurm.schedmd.com/ 用户命令cheatsheet:https://slurm.schedmd.com/pdfs/summary.pdf 占用GPU sall ...

  4. 洛谷 P2216 [HAOI2007]理想正方形

    洛谷 巨说这是一道单调队列好题,但是我并不是用单调队列做的诶. 如果往最暴力的方向去想,肯定是\(n^3\)的\(dp\)了. \(f[i][j][k]\)代表当前正方形的左上角定点是\((i,j)\ ...

  5. What is tail-recursion

    Consider a simple function that adds the first N integers. (e.g. sum(5) = 1 + 2 + 3 + 4 + 5 = 15). H ...

  6. 企业内部安全宣贯:乌云网停摆事件的思考与评论——By Me

    2016年7月20日,“自由平等开放的漏洞报告平台”乌云网[1] 被迫停摆,包括乌云网创始人方小顿[2] 在内的多名高管突然被捕.乌云的存在可以说是为了修复人们长期缺失的安全意识和堪忧的安全生态,但是 ...

  7. Linux学习笔记(8)文件搜索与帮助

    帮助: (1) man ls (2) info  ls  (3) whatis ls  (4) help 搜索: (1) which  ls :查看ls命令所在绝对路径 (2) locate user ...

  8. MTK平台环境搭建---Ubuntu Linux 下执行sudo apt-get install提示“现在没有可用的软件包……

    问题描述: sudo apt-get install openssh-server 正在读取软件包列表... 完成正在分析软件包的依赖关系树 Reading state information... ...

  9. mapreduce数据不平衡时的处理方法

    用mr处理大数据经常遇到数据不平衡的情况,这里的数据不平衡指的是,数据中有少部分key集中了大量的数据,导致其它的reduce都运行完了,只剩几个reduce在跑.这种情况一般有如下三种解决方法(原理 ...

  10. Centos学习笔记2-网络部分

    一:修改IP地址:vi /etc/sysconfig/network-scripts/ifcfg-eth0 IPADDR=192.168.80.100 NETMASK=255.255.255.0 GA ...