hdu 5768 Lucky7 中国剩余定理+容斥+快速乘
Lucky7
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
?? was born, seven crows flew in and stopped beside him. In its
childhood, ?? had been unfortunately fall into the sea. While it was
dying, seven dolphins arched its body and sent it back to the shore. It
is said that ?? used to surrounded by 7 candles when he faced a
extremely difficult problem, and always solve it in seven minutes.
??
once wrote an autobiography, which mentioned something about himself.
In his book, it said seven is his favorite number and he thinks that a
number can be divisible by seven can bring him good luck. On the other
hand, ?? abhors some other prime numbers and thinks a number x divided
by pi which is one of these prime numbers with a given remainder ai will
bring him bad luck. In this case, many of his lucky numbers are
sullied because they can be divisible by 7 and also has a remainder of
ai when it is divided by the prime number pi.
Now give you a pair of x
and y, and N pairs of ai and pi, please find out how many numbers
between x and y can bring ?? good luck.
Each test case starts with three integers three intergers n, x, y(0<=n<=15,0<x<y<1018) on a line where n is the number of pirmes.
Following
on n lines each contains two integers pi, ai where pi is the pirme and
?? abhors the numbers have a remainder of ai when they are divided by
pi.
It is guranteed that all the pi are distinct and pi!=7.
It is also guaranteed that p1*p2*…*pn<=1018 and 0<ai<pi<=105for every i∈(1…n).
2 1 100
3 2
5 3
0 1 100
Case #2: 14
For Case 1: 7,21,42,49,70,84,91 are the seven numbers.
For Case2: 7,14,21,28,35,42,49,56,63,70,77,84,91,98 are the fourteen numbers.
2016 Multi-University Training Contest 4
思路:套一个中国剩余定理两两不互质的模版;
容斥一发。。。由于犯了一个sb错,wa一天,不想说什么了;
1005 Lucky7
因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题。当我们选定了一系列pi和ai后,题意转化为求 [x,y]中被7整除余0,且被这一系列pi除余ai的数的个数,可以看成若干个同余方程联立成的一次同余方程组。然后我们就可以很自然而然的想到了中国 剩余定理。需要注意的是,在处理中国剩余定理的过程中,可能会发生超出LongLong的情况,需要写个类似于快速幂的快速乘法来处理。
二进制枚举:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll __int64
#define esp 0.00000000001
const int N=1e2+,M=1e6+,inf=1e9+,mod=;
ll a[N];
ll b[N];
ll p[N];
ll m[N];
ll mulmod(ll x,ll y,ll m)
{
ll ans=;
while(y)
{
if(y%)
{
ans+=x;
ans%=m;
}
x+=x;
x%=m;
y/=;
}
ans=(ans+m)%m;
return ans;
}
void exgcd(ll a, ll b, ll &x, ll &y)
{
if(b == )
{
x = ;
y = ;
return;
}
exgcd(b, a % b, x, y);
ll tmp = x;
x = y;
y = tmp - (a / b) * y;
}
ll CRT(ll a[],ll m[],ll n)
{
ll M = ;
ll ans = ;
for(ll i=; i<n; i++)
M *= m[i];
for(ll i=; i<n; i++)
{
ll x, y;
ll Mi = M / m[i];
exgcd(Mi, m[i], x, y);
//ans = (ans + Mi * x * a[i]) % M;
ans = (ans +mulmod( mulmod( x , Mi ,M ), a[i] , M ) ) % M;
}
ans=(ans + M )% M;
return ans;
}
int main()
{
ll x,y,z,i,t;
int T,cas=;
scanf("%d",&T);
while(T--)
{
scanf("%I64d%I64d%I64d",&x,&y,&z);
for(i=;i<=x;i++)
scanf("%I64d%I64d",&b[i],&a[i]);
ll ans=;
for(i=;i<(<<x);i++)
{
ll cnt=,mul=;
p[cnt]=;
m[cnt++]=;
for(int ji=,t=i;t>;t>>=,ji++)
if(t&)mul*=b[ji],p[cnt]=a[ji],m[cnt++]=b[ji];
ll pp=CRT(p,m,cnt);
if(cnt&)
ans+=z/mul+(z%mul>=pp)-((y-)/mul+(((y-)%mul)>=pp));
else
ans-=z/mul+(z%mul>=pp)-((y-)/mul+(((y-)%mul)>=pp));
}
printf("Case #%d: %I64d\n",cas++,ans);
}
return ;
}
dfs写法:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll __int64
#define esp 0.00000000001
const int N=1e2+,M=1e6+,inf=1e9+,mod=;
ll a[N];
ll b[N];
ll ji;
ll mulmod(ll x,ll y,ll m)
{
ll ans=;
while(y)
{
if(y%)
{
ans+=x;
ans%=m;
}
x+=x;
x%=m;
y/=;
}
ans=(ans+m)%m;
return ans;
}
void exgcd(ll a, ll b, ll &x, ll &y)
{
if(b == )
{
x = ;
y = ;
return;
}
exgcd(b, a % b, x, y);
ll tmp = x;
x = y;
y = tmp - (a / b) * y;
}
ll CRT(ll p,ll m,ll k,ll l)
{
ll M = m * l;
ll ans = ;
ll x, y;
ll Mi = l;
exgcd(Mi, m, x, y);
ans = (ans + mulmod( mulmod( x%M, Mi%M, M) , p%M , M))% M;
Mi = m;
exgcd(Mi, l, x, y);
ans = (ans + mulmod( mulmod(x%M ,Mi%M , M) , k%M, M))% M;
if(ans < ) ans += M;
return ans;
}
void dfs(ll p,ll m,ll pos,ll step,ll x,ll &ans)
{
if(pos==ji)
{
if(step%)
{
ans-=x/m;
if(x%m>=p)
ans--;
}
else
{
ans+=(x/m);
if(x%m>=p)
ans++;
}
return;
}
dfs(CRT(p,m,a[pos],b[pos]),m*b[pos],pos+,step+,x,ans);
dfs(p,m,pos+,step,x,ans);
}
int main()
{
ll x,y,z,i,t;
int T,cas=;
scanf("%d",&T);
while(T--)
{
scanf("%I64d%I64d%I64d",&x,&y,&z);
ji=x;
for(i=; i<x; i++)
scanf("%I64d%I64d",&b[i],&a[i]);
ll ansr=,ansl=;
dfs(,,,,z,ansr);
dfs(,,,,y-,ansl);
printf("Case #%d: %I64d\n",cas++,ansr-ansl);
}
return ;
}
hdu 5768 Lucky7 中国剩余定理+容斥+快速乘的更多相关文章
- HDU 5768 Lucky7 (中国剩余定理+容斥)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5768 给你n个同余方程组,然后给你l,r,问你l,r中有多少数%7=0且%ai != bi. 比较明显 ...
- HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)
Lucky7 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...
- hdu_5768_Lucky7(中国剩余定理+容斥)
题目链接:hdu_5768_Lucky7 题意: 给你一个区间,问你这个区间内是7的倍数,并且满足%a[i]不等于w[i]的数的个数 乍一看以为是数位DP,仔细看看条件,发现要用中国剩余定理,然后容斥 ...
- HDU5768Lucky7(中国剩余定理+容斥定理)(区间个数统计)
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortun ...
- 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai 的数 ...
- hdu 5768 Lucky7 容斥
Lucky7 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...
- HDU 5768 Lucky7 容斥原理+中国剩余定理(互质)
分析: 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题.当我们选定了一系列pi和ai后,题意转化为求[x,y]中被7整除余0,且被这一系列pi除余ai的 ...
- HDU 5768 Lucky7 (容斥原理 + 中国剩余定理 + 状态压缩 + 带膜乘法)
题意:……应该不用我说了,看起来就很容斥原理,很中国剩余定理…… 方法:因为题目中的n最大是15,使用状态压缩可以将所有的组合都举出来,然后再拆开成数组,进行中国剩余定理的运算,中国剩余定理能够求出同 ...
- HDU 5768 Lucky7(CRT+容斥原理)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5768 [题目大意] 求出一个区间内7的倍数中,对于每个ai取模不等于bi的数的个数. [题解] 首 ...
随机推荐
- Linux下修改Mysql的用(root的密码及修改root登录权限
修改的用户都以root为列. 一.知道原来的myql数据库的root密码: ①: 在终端命令行输入 mysqladmin -u root -p password "新密码" 回车 ...
- 用Python xlwt建立excel表格
1.下载xlwt的Python库 (This is a library for developers to use to generate spreadsheet files compatible w ...
- 微软企业库验证 Validations
using System; using System.Collections; using System.Collections.Generic; using System.Linq; using S ...
- Commit message 的写法规范。本文介绍Angular 规范(
Commit message 的写法规范.本文介绍Angular 规范( http://www.ruanyifeng.com/blog/2016/01/commit_message_change_lo ...
- 第17章—前端分页(Bootstrap-Table)
spring boot 系列学习记录:http://www.cnblogs.com/jinxiaohang/p/8111057.html 码云源码地址:https://gitee.com/jinxia ...
- 看用Tornado如何自定义实现表单验证
我们知道,平时在登陆某个网站或软件时,网站对于你输入的内容是有要求的,并且会对你输入的错误内容有提示,对于Django这种大而全的web框架,是提供了form表单验证功能,但是对于Tornado而言, ...
- facebook 相似性搜索库 faiss
faiss 个人理解: https://github.com/facebookresearch/faiss 上把代码clone下来,make编译 我们将CNN中经过若干个卷积/激励/池化层后得到的激活 ...
- hadoop开发MapReduce程序
准备工作: 1.设置HADOOP_HOME,指向hadoop安装目录 2.在window下,需要把hadoop/bin那个目录替换下,在网上搜一个对应版本的 3.如果还报org.apache.hado ...
- Remote System Upgrade With Cyclone III Devices
系统设计者会遇到较短的设计周期.标准发展和系统调度的挑战,飓风III系列支持远程系统更新,通过其固有的重编程功能和专有电路来克服以上问题.远程系统更新帮助传递系统性能增强和bug修复,避免了昂贵的召回 ...
- 阿里云上Docker Compose部署wordpress
先上官方文档: https://docs.docker.com/compose/wordpress/ 我的环境: [root@xyjk1002 ~]# cat /etc/redhat-release ...