[CF662C]Binary Table
题意
你有一个\(n*m\)的\(01\)矩阵。你可以把任意一行或者一列的\(01\)取反。求矩阵中最少的\(1\)的数量。
\(n\le20,m\le10^5\)
sol
很自然地有一个\(O(2^nm)\)的暴力:枚举横行的取反情况,然后纵列就取\(01\)数量较少的一者。
我们记状态\(x\)在原矩阵中的出现次数为\(a[x]\),状态中\(01\)较少一者的数量为\(b[x]\)。
会发现当最终的取反状态为\(i\)时,会有\(ans_i=\sum_{j\otimes k=i}a_j*b_k\)。
就是一个异或卷积。FWT即可。
code
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int gi(){
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
#define ll long long
const int N = 1<<20;
const int M = 1e5+5;
int n,m,len;ll a[N],b[N];char s[20][M];
void fwt(ll *P,int opt){
for (int i=1;i<len;i<<=1)
for (int p=i<<1,j=0;j<len;j+=p)
for (int k=0;k<i;++k){
ll x=P[j+k],y=P[j+k+i];
P[j+k]=(x+y)/opt;P[j+k+i]=(x-y)/opt;
}
}
int main(){
n=gi();m=gi();len=1<<n;
for (int i=0;i<n;++i) scanf("%s",s[i]+1);
for (int i=1;i<=m;++i){
int x=0;
for (int j=0;j<n;++j) x=(x<<1)+s[j][i]-'0';
++a[x];
}
for (int i=1;i<len;++i) b[i]=b[i>>1]+(i&1);
for (int i=1;i<len;++i) b[i]=min(b[i],n-b[i]);
fwt(a,1);fwt(b,1);
for (int i=0;i<len;++i) a[i]*=b[i];
fwt(a,2);
ll ans=a[0];
for (int i=1;i<len;++i) ans=min(ans,a[i]);
printf("%I64d\n",ans);return 0;
}
[CF662C]Binary Table的更多相关文章
- [CF662C Binary Table][状压+FWT]
CF662C Binary Table 一道 FWT 的板子-比较难想就是了 有一个 \(n\) 行 \(m\) 列的表格,每个元素都是 \(0/1\),每次操作可以选择一行或一列,把 \(0/1\) ...
- CF662C Binary Table【FWT】
CF662C Binary Table 题意: 给出一个\(n\times m\)的\(01\)矩阵,每次可以反转一行或者一列,问经过若干次反转之后,最少有多少个\(1\) \(n\le 20, m\ ...
- CF662C Binary Table 【状压 + FWT】
题目链接 CF662C 题解 行比较少,容易想到将每一列的状态压缩 在行操作固定的情况下,容易发现每一列的操作就是翻转\(0\)和\(1\),要取最小方案,方案唯一 所以我们只需求出每一种操作的答案 ...
- [CF662C] Binary Table(FWT)
题意: https://www.cnblogs.com/cjyyb/p/9065801.html 题解:
- CF662C Binary Table FWT
传送门 \(N \leq 20\)很小诶 一个暴力的思路是枚举行的翻转状态然后在列上贪心 复杂度为\(O(2^NM)\)显然过不去 考虑到可能有若干列的初始状态是一样的,那么在任意反转之后他们贪心的策 ...
- CF662C Binary Table 枚举 FWT
题面 洛谷题面 (虽然洛谷最近有点慢) 题解 观察到行列的数据范围相差悬殊,而且行的数量仅有20,完全可以支持枚举,因此我们考虑枚举哪些行会翻转. 对于第i列,我们将它代表的01串提取出来,表示为\( ...
- CF662C Binary Table (FWT板题)
复习了一发FWT,发现还挺简单的... 没时间写了,就放一个博客吧:Great_Influence 的博客 注意这一句ans[i]=∑j⊗k=if[j]∗dp[k]ans[i]= ∑_{j⊗k=i} ...
- CF662C Binary Table (快速沃尔什变换FWT)
题面 题解 我们会发现,如果单独的一列或一行,它的答案是O1确定的,如果确定了每一行是否变换,那么最后的答案也就简单了许多, 如果确定了行的变换状压下来是x(即x的i位表示第i行是否变换,理解就行), ...
- 【CF662C】Binary Table(FWT)
[CF662C]Binary Table(FWT) 题面 洛谷 CF 翻译: 有一个\(n*m\)的表格(\(n<=20,m<=10^5\)), 每个表格里面有一个\(0/1\), 每次可 ...
随机推荐
- CentOS6、7优化脚本完美版
#!/bin/bash SysVer=`cat /etc/redhat-release | awk -F'release' '{print $2}' | awk -F'[ .]+' '{print $ ...
- Spring_事务(2)
- JavaEE之Junit单元测试
1编写测试类,简单理解Junit可以部分用于取代java的main方法 2在测试类方法上添加注解 @Test 3 @Test修饰的方法要求:public void 方法名() {…} ,方法名自定义建 ...
- Spring Cloud2.0之Oauth2环境搭建(授权码模式和密码授权模式)
oauth2 server 微服务授权中心, github源码 https://github.com/spring-cloud/spring-cloud-security 对微服务接口做一些权 ...
- LeetCode——Construct the Rectangle
LeetCode--Construct the Rectangle Question For a web developer, it is very important to know how to ...
- Maven+Struts+Hibernate+Spring简单项目搭建
这段时间学习如何使用Maven+Struts+Hibernate+Spring注解方式建立项目,在这里感谢孙宇老师. 第一次写博客,主要是方便自己查看,同时分享给大家,希望对大家有所帮助,我也是 ...
- Android -- junit测试框架,logcat获取log信息
1. 相关概念 白盒测试: 知道程序源代码. 根据测试的粒度分为不同的类型 方法测试 function test 单元测试 unit test 集成 ...
- 微信app支付java后台流程、原理分析及nei网穿透
一.流程步骤 本实例是基于springmvc框架编写 1.执行流程 当手机端app(就是你公司开发的app)在支付页面时,调起服务端(后台第1个创建订单接口)接口,后台把需要调起微 ...
- Treflection06_调用静态方法
1. package reflectionZ; import java.lang.reflect.Method; public class Treflection06 { public static ...
- 使用ssm整合是创建Maven项目报错Failure to transfer com.thoughtworks.xstream:xstream:pom:1.3.1
Description Resource Path Location TypeFailure to transfer com.thoughtworks.xstream:xstream:pom:1.3. ...