这个计数定理在考虑对称的计数中非常有用

先给出这个定理的描述,虽然看不太懂:

在一个置换群G={a1,a2,a3……ak}中,把每个置换都写成不相交循环的乘积。 

设C1(ak)是在置换ak的作用下不动点的个数,也就是长度为1的循环的个数。通过上述置换的变换操作后可以相等的元素属于同一个等价类

那么等价类的个数就等于:

然后理解一下公式

一正方形分成4格,2着色,有多少种方案?其中,经过转动相同的图象算同一方案。

关于转动,一共有四种置换方法,也就是|G|=4

不动(360度):a1=(1)(2)…(16)
逆时针转90度 :a2=(1)(2)(3 4 5 6)(7 8 9 10) (11 12)(13 14 15 16)
顺时针转90度 :a3=(1)(2)(6 5 4 3)(10 9 8 7)(11 12)(16 15 14 13)
转180度:a4=(1)(2)(3 5)(4 6)(7 9)(8 10)(11)(12) (13 15)(14 16)

然后我们针对每一种置换的方式,找到其中的不动点,也就是只有自己的情况

由Burnside引理,共有(16+2+2+4)/4=6(种方案)

然后的Pólya定理其实就是简化这个运算用的

利用Burnside引理要首先列出所有n^m种可能的染色方案,然后找出在每个置换下保持不变的方案数。

然后找出在每个置换下保持不变的方案数,显然当m或n很大的时候,复杂度会炸

Polya定理实际上是Burnside引理的具体化,提供了计算不动点的具体方法

假设一个置换有σk个循环,就是轮换

易知每个循环对应的所有位置颜色需一致,而任意两个循环之间选什么颜色互不影响。

因此,如果有m种可选颜色,则该置换对应的不动点个数为m^σk。

用其替换Burnside引理中的C(G),即C(G)=m^k。得到等价类数目为:

老实说,我看不懂这个怎么用的。。

burnside定理就是 非等价染色数 = 在G中单个置换下保持不变的染色数的平均数

而polya定理说的是一种特殊情况,若有m中颜色,每种颜色不限数量,则在G中的某个置换g下,保持不变的染色数=m^k,k为置换g的循环个数

典型例题POJ1286

我们需要求的也就是不同置换的个数,和每一个置换的循环节数

旋转,旋转i个小球的距离,那么会得到0~n-1的置换方案,共有n种,对于旋转i个小球的循环节数为gcd(n,i)

翻转,对于偶数,不经过小球有对称抽有n/2个,每种置换方案有n/2+1个循环节;经过小球的对称轴有n/2个,每种置换方案有n/2个循环节

对于奇数,经过小球的对称轴,有n个,每种方案有n/2+1个循环节

 #include<cstdio>
long long n,ans;
long long gcd(long long a,long long b)
{
return b==?a:gcd(b,a%b);
}
long long pow(long long x,long long k)
{
if(k==) return x;
long long s=pow(x,k/);
s=s*s;
if(k%) s*=x;
return s;
}
int main()
{
while(scanf("%lld",&n)==&&n!=-)
{
if(n==)
{
printf("0\n");
continue;
}
ans=;
for(int i=;i<n;i++)
ans+=pow(,gcd(n,i));
if(n%)
{
ans+=n*pow(,n/+);
}
else
{
ans+=n/*pow(,n/);
ans+=n/*pow(,n/+);
}
printf("%lld\n",ans/(n*));
}
return ;
}

数学:Burnside引理与Pólya定理的更多相关文章

  1. @总结 - 12@ burnside引理与pólya定理

    目录 @0 - 参考资料@ @1 - 问题引入@ @2 - burnside引理@ @3 - pólya定理@ @4 - pólya定理的生成函数形式@ @0 - 参考资料@ 博客1 @1 - 问题引 ...

  2. Burnside 引理与 Pólya 定理

    群 群的定义 在数学中,群是由一种集合以及一个二元运算所组成的,符合"群公理"的代数结构. 一个群是一个集合 \(G\) 加上对 \(G\) 的二元运算.二元运算用 \(\cdot ...

  3. 置换群和Burnside引理,Polya定理

    定义简化版: 置换,就是一个1~n的排列,是一个1~n排列对1~n的映射 置换群,所有的置换的集合. 经常会遇到求本质不同的构造,如旋转不同构,翻转交换不同构等. 不动点:一个置换中,置换后和置换前没 ...

  4. Burnside引理与polay定理

    #Burnside引理与polay定理 引入概念 1.置换 简单来说就是最元素进行重排列 是所有元素的异议映射,即\([1,n]\)映射到\([1,n]\) \[ \begin{pmatrix} 1& ...

  5. Burnside引理与Polya定理

    感觉这两个东西好鬼畜= = ,考场上出了肯定不会qwq.不过还是学一下吧用来装逼也是极好的 群的定义 与下文知识无关.. 给出一个集合$G = \{a, b, c, \dots \}$和集合上的二元运 ...

  6. Burnside引理与Polya定理 学习笔记

    原文链接www.cnblogs.com/zhouzhendong/p/Burnside-Polya.html 问题模型 有一个长度为 $n$ 的序列,序列中的每一个元素有 $m$ 种取值. 如果两个序 ...

  7. 【POJ2888】Magic Bracelet Burnside引理+欧拉函数+矩阵乘法

    [POJ2888]Magic Bracelet 题意:一个长度为n的项链,有m种颜色的珠子,有k个限制(a,b)表示颜色为a的珠子和颜色为b的珠子不能相邻,求用m种珠子能串成的项链有多少种.如果一个项 ...

  8. 【BZOJ1004】[HNOI2008]Cards Burnside引理

    [BZOJ1004][HNOI2008]Cards 题意:把$n$张牌染成$a,b,c$,3种颜色.其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$.并且给出$m$个置换,保证这$m$个置 ...

  9. 【uva 10294】 Arif in Dhaka (First Love Part 2) (置换,burnside引理|polya定理)

    题目来源:UVa 10294 Arif in Dhaka (First Love Part 2) 题意:n颗珠子t种颜色 求有多少种项链和手镯 项链不可以翻转 手镯可以翻转 [分析] 要开始学置换了. ...

随机推荐

  1. H5页面 绝对定位元素被 软键盘弹出时顶起

    H5页面 绝对定位元素被 软键盘弹出时顶起 在h5页面开发的过程中,我们可能会遇到下面这个问题,当页面中有输入框的时候,系统自带的软盘会把按钮挤出原来的位置.那么我们该怎么解决呢?下面列出一下的方法: ...

  2. 关于智能指针类型shared_ptr的计数问题

    一.关键 每个shared_ptr所指向的对象都有一个引用计数,它记录了有多少个shared_ptr指向自己 shared_ptr的析构函数:递减它所指向的对象的引用计数,如果引用计数变为0,就会销毁 ...

  3. # ML学习小笔记—Classification

    关于本课程的相关资料http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17.html 通过模型可以分类输入,此时根据分类结果的正确与否会有一个Loss函数.找 ...

  4. 文件“bin\Debug\WindowsFormsApplication2.exe”正由另一进程使用,因此该进程无法访问该文件。

    http://zhidao.baidu.com/question/221394579.html?qbl=relate_question_2&word=%BE%AF%B8%E6%094%09%C ...

  5. 每天网络半小时(MAC数据包在哪里合并的)

    ip_deliver_local函数中函数中完成合并 听过netfilter框架中也会 因为net_filter框架需要感知到第四层的信息,但是单个数据包是无法感知到这些信息的,所以需要在netfil ...

  6. Python 开篇及第一个Python程序

    本节内容 python 简单介绍 python 2.x 或者python 3.x python 安装 第一个python程序 一.python简单介绍 python的创始人为吉多.范罗苏姆(Guido ...

  7. CF961D Pair Of Lines

    题目描述 You are given n n n points on Cartesian plane. Every point is a lattice point (i. e. both of it ...

  8. (三)Redis列表List操作

    List全部命令如下: lset key index value # 将列表key下标为index的元素的值设置为value,当 index 参数超出范围,或对一个空列表(key不存在)进行lset时 ...

  9. 【题解】Atcoder ARC#83 E-Bichrome Tree

    哈哈~自己做出来的E题!(虽然这题被机房大佬强D极水).最开始神经错乱,写了个完全不对的贪心,竟然只错了4个点(。•ˇ‸ˇ•。) 可以发现,一个节点的子树内部和他颜色相同的节点权值和 是固定的,那么不 ...

  10. [Vue源码分析] v-model实现原理

    最近小组有个关于vue源码分析的分享会,提前准备一下… 前言:我们都知道使用v-model可以实现数据的双向绑定,及实现数据的变化驱动dom的更新,dom的更新影响数据的变化.那么v-model是怎么 ...