原题

简单的LCT练习题。

我们发现对于一个位置x,他只能跳到位置x+k,也就是唯一的父亲去。加入我们将弹飞的绵羊定义为跳到了n+1,那么这就形成了一棵树。而因为要修改k,所以这颗树是动态连边的,那么LCT就可以解决了。

至于询问,我们把n+1变成根,然后access(x)将x到n+1的路径变为实路径,splay(x),因为每次是向父亲弹,所以sze[ls[x]]即为答案。

//想知道为什么不是sze[x]-1

AC代码:

#include<cstdio>
#include<algorithm>
#define N 200010
#define which(u) (ls[fa[(u)]]==(u))
#define isroot(u) (!fa[(u)] || (ls[fa[(u)]]!=(u) && rs[fa[u]]!=(u)))
using namespace std;
int n,m,fa[N],ls[N],rs[N],a[N],sze[N];
bool rev[N];
char s[20]; void update(int x)
{
sze[x]=1;
if (ls[x]) sze[x]+=sze[ls[x]];
if (rs[x]) sze[x]+=sze[rs[x]];
} void rotate(int u)
{
int v=fa[u],w=fa[v],b=which(u)?rs[u]:ls[u];
if (!isroot(v)) (which(v)?ls[w]:rs[w])=u;
which(u)?(ls[v]=b,rs[u]=v):(rs[v]=b,ls[u]=v);
fa[u]=w,fa[v]=u;
if (b) fa[b]=v;
if (v) update(v);
if (u) update(u);
} void pushdown(int u)
{
if (!rev[u]) return ;
rev[ls[u]]^=1;
rev[rs[u]]^=1;
swap(ls[u],rs[u]);
rev[u]=0;
} void splay(int u)
{
static int stk[N],top;
stk[top=1]=u;
while (!isroot(stk[top])) stk[top+1]=fa[stk[top]],top++;
while (top) pushdown(stk[top--]);
while (!isroot(u))
{
if (!isroot(fa[u]))
{
if (which(u)==which(fa[u])) rotate(fa[u]);
else rotate(u);
}
rotate(u);
}
} void access(int u)
{
int v=0;
while (u)
{
splay(u);
rs[u]=v;
v=u;
u=fa[u];
}
} void makeroot(int u)
{
access(u);
splay(u);
rev[u]^=1;
} void link(int u,int v)
{
makeroot(v);
fa[v]=u;
} void cut(int u,int v)
{
makeroot(u);
access(v);
splay(v);
ls[v]=fa[u]=0;
} int query(int x)
{
makeroot(n+1);
access(x);
splay(x);
return sze[ls[x]];
} int main()
{
scanf("%d",&n);
for (int i=1,x;i<=n;i++)
{
scanf("%d",&x);
a[i]=(i+x<=n)?i+x:n+1;
fa[i]=a[i];
sze[i]=1;
}
sze[n+1]=1;
scanf("%d",&m);
while (m--)
{
int op,x,y;
scanf("%d%d",&op,&x);
++x;
if (op==1)
printf("%d\n",query(x));
else
{
scanf("%d",&y);
cut(x,a[x]);
a[x]=(x+y<=n)?x+y:n+1;
link(x,a[x]);
}
}
return 0;
}

[bzoj] 2002 弹飞绵羊 || LCT的更多相关文章

  1. bzoj 2002 弹飞绵羊 lct裸题

    上一次用分块过了, 今天换了一种lct(link-cut tree)的写法. 学lct之前要先学过splay. lct 简单的来说就是 一颗树, 然后每次起作用的都是其中的某一条链. 所以每次如果需要 ...

  2. BZOJ 2002 弹飞绵羊(分块)

    题目:弹飞绵羊 这道题,据说是lct裸题,但是lct那么高级的数据结构,我并不会,所以采取了学长讲过的分块做法,我们对序列分块,可以定义两个数组,其中一个表示从当前位置跳出当前块需要多少步,另一个数组 ...

  3. bzoj 2002: 弹飞绵羊 Link-Cut-Tree

    题目: Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置, ...

  4. bzoj 2002 弹飞绵羊 分块

    正解lct,然而本蒟蒻并不会.... 分块思路很清晰,处理出每个点弹出所在块所需要的步数及出去后的第一个位置 #include<cstdio> #include<cstring> ...

  5. BZOJ 2002 弹飞绵羊

    LCT 刚学LCT,对LCT的性质不太熟练,还需要多多练习.. 对每一个点,将其与它能够到达的点连一条虚边.弹出去的话就用n+1这个节点表示. 第一种操作我们需要从LCT的性质入手,问的问题其实就是x ...

  6. BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 LCT

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOn ...

  7. 洛谷P3203 [HNOI2010] 弹飞绵羊 [LCT]

    题目传送门 弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置, ...

  8. P3203 [HNOI2010]弹飞绵羊(LCT)

    弹飞绵羊 题目传送门 解题思路 LCT. 将每个节点的权值设为\(1\),连接\(i\)和\(i+ki\),被弹飞就连上\(n\),维护权值和\(sum[]\).从\(j\)弹飞需要的次数就是\(sp ...

  9. [Luogu P3203] [HNOI2010]弹飞绵羊 (LCT维护链的长度)

    题面 传送门:洛谷 Solution 这题其实是有类似模型的. 我们先考虑不修改怎么写.考虑这样做:每个点向它跳到的点连一条边,最后肯定会连成一颗以n+1为根的树(我们拿n+1代表被弹出去了).题目所 ...

随机推荐

  1. unity share current game screen

    using UnityEngine; using System.Collections; using UnityEngine.UI; using System.IO; public class Tak ...

  2. 【SpringCloud】第六篇: 分布式配置中心(Spring Cloud Config)

    前言: 必需学会SpringBoot基础知识 简介: spring cloud 为开发人员提供了快速构建分布式系统的一些工具,包括配置管理.服务发现.断路器.路由.微代理.事件总线.全局锁.决策竞选. ...

  3. Unity Shader学习笔记 - 用UV动画实现沙滩上的泡沫

    这个泡沫效果来自远古时代的Unity官方海岛Demo, 原效果直接复制3个材质球在js脚本中做UV动画偏移,这里尝试在shader中做动画并且一个pass中完成: // Upgrade NOTE: r ...

  4. Java and SDK 环境变量设置

    File comes from http://www.cnblogs.com/shinge/p/5500002.html JAVA环境变量配置详解 JAVA环境变量JAVA_HOME.CLASSPAT ...

  5. 几个常见移动平台浏览器的User-Agent

    之前介绍的手机站跳转url的一片文稿中提到,依据User Agent判断终端的方法.(文章地址:http://www.cnblogs.com/dereksunok/p/3664169.html ) 若 ...

  6. 统计单词数:string函数使用

    题目描述 一般的文本编辑器都有查找单词的功能,该功能可以快速定位特定单词在文章中的位置,有的还能统计出特定单词在文章中出现的次数. 现在,请你编程实现这一功能,具体要求是:给定一个单词,请你输出它在给 ...

  7. linux服务器操作小技巧

    python程序后台一直运行,并将打印信息输出到文件中 nohup -u test.py > out.txt & -u 表示无缓冲,直接将打印信息输出带文件中 &表示程序后台运行

  8. BZOJ 4736 温暖会指引我们前行 LCT+最优生成树+并查集

    题目链接:http://uoj.ac/problem/274 题意概述: 没什么好概述的......概述了题意就知道怎么做了......我懒嘛 分析: 就是用lct维护最大生成树. 然后如果去UOJ上 ...

  9. iOS- 用UICollectionViewController 来进行横竖屏九宫格布局

    1.简单说说UICollectionViewController 我们在做九宫格布局时,可以使用UIScrollView,也可以使用UICollectionViewController. 当我们用UI ...

  10. TCP系列22—重传—12、Forward Retransmit

    一.概述 forward retransmit相关的内容在RFC6675中有描述,可以参考RFC6675 section 4中NextSeg ()的定义.forward retransmit中文名可以 ...