原题

简单的LCT练习题。

我们发现对于一个位置x,他只能跳到位置x+k,也就是唯一的父亲去。加入我们将弹飞的绵羊定义为跳到了n+1,那么这就形成了一棵树。而因为要修改k,所以这颗树是动态连边的,那么LCT就可以解决了。

至于询问,我们把n+1变成根,然后access(x)将x到n+1的路径变为实路径,splay(x),因为每次是向父亲弹,所以sze[ls[x]]即为答案。

//想知道为什么不是sze[x]-1

AC代码:

#include<cstdio>
#include<algorithm>
#define N 200010
#define which(u) (ls[fa[(u)]]==(u))
#define isroot(u) (!fa[(u)] || (ls[fa[(u)]]!=(u) && rs[fa[u]]!=(u)))
using namespace std;
int n,m,fa[N],ls[N],rs[N],a[N],sze[N];
bool rev[N];
char s[20]; void update(int x)
{
sze[x]=1;
if (ls[x]) sze[x]+=sze[ls[x]];
if (rs[x]) sze[x]+=sze[rs[x]];
} void rotate(int u)
{
int v=fa[u],w=fa[v],b=which(u)?rs[u]:ls[u];
if (!isroot(v)) (which(v)?ls[w]:rs[w])=u;
which(u)?(ls[v]=b,rs[u]=v):(rs[v]=b,ls[u]=v);
fa[u]=w,fa[v]=u;
if (b) fa[b]=v;
if (v) update(v);
if (u) update(u);
} void pushdown(int u)
{
if (!rev[u]) return ;
rev[ls[u]]^=1;
rev[rs[u]]^=1;
swap(ls[u],rs[u]);
rev[u]=0;
} void splay(int u)
{
static int stk[N],top;
stk[top=1]=u;
while (!isroot(stk[top])) stk[top+1]=fa[stk[top]],top++;
while (top) pushdown(stk[top--]);
while (!isroot(u))
{
if (!isroot(fa[u]))
{
if (which(u)==which(fa[u])) rotate(fa[u]);
else rotate(u);
}
rotate(u);
}
} void access(int u)
{
int v=0;
while (u)
{
splay(u);
rs[u]=v;
v=u;
u=fa[u];
}
} void makeroot(int u)
{
access(u);
splay(u);
rev[u]^=1;
} void link(int u,int v)
{
makeroot(v);
fa[v]=u;
} void cut(int u,int v)
{
makeroot(u);
access(v);
splay(v);
ls[v]=fa[u]=0;
} int query(int x)
{
makeroot(n+1);
access(x);
splay(x);
return sze[ls[x]];
} int main()
{
scanf("%d",&n);
for (int i=1,x;i<=n;i++)
{
scanf("%d",&x);
a[i]=(i+x<=n)?i+x:n+1;
fa[i]=a[i];
sze[i]=1;
}
sze[n+1]=1;
scanf("%d",&m);
while (m--)
{
int op,x,y;
scanf("%d%d",&op,&x);
++x;
if (op==1)
printf("%d\n",query(x));
else
{
scanf("%d",&y);
cut(x,a[x]);
a[x]=(x+y<=n)?x+y:n+1;
link(x,a[x]);
}
}
return 0;
}

[bzoj] 2002 弹飞绵羊 || LCT的更多相关文章

  1. bzoj 2002 弹飞绵羊 lct裸题

    上一次用分块过了, 今天换了一种lct(link-cut tree)的写法. 学lct之前要先学过splay. lct 简单的来说就是 一颗树, 然后每次起作用的都是其中的某一条链. 所以每次如果需要 ...

  2. BZOJ 2002 弹飞绵羊(分块)

    题目:弹飞绵羊 这道题,据说是lct裸题,但是lct那么高级的数据结构,我并不会,所以采取了学长讲过的分块做法,我们对序列分块,可以定义两个数组,其中一个表示从当前位置跳出当前块需要多少步,另一个数组 ...

  3. bzoj 2002: 弹飞绵羊 Link-Cut-Tree

    题目: Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置, ...

  4. bzoj 2002 弹飞绵羊 分块

    正解lct,然而本蒟蒻并不会.... 分块思路很清晰,处理出每个点弹出所在块所需要的步数及出去后的第一个位置 #include<cstdio> #include<cstring> ...

  5. BZOJ 2002 弹飞绵羊

    LCT 刚学LCT,对LCT的性质不太熟练,还需要多多练习.. 对每一个点,将其与它能够到达的点连一条虚边.弹出去的话就用n+1这个节点表示. 第一种操作我们需要从LCT的性质入手,问的问题其实就是x ...

  6. BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 LCT

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOn ...

  7. 洛谷P3203 [HNOI2010] 弹飞绵羊 [LCT]

    题目传送门 弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置, ...

  8. P3203 [HNOI2010]弹飞绵羊(LCT)

    弹飞绵羊 题目传送门 解题思路 LCT. 将每个节点的权值设为\(1\),连接\(i\)和\(i+ki\),被弹飞就连上\(n\),维护权值和\(sum[]\).从\(j\)弹飞需要的次数就是\(sp ...

  9. [Luogu P3203] [HNOI2010]弹飞绵羊 (LCT维护链的长度)

    题面 传送门:洛谷 Solution 这题其实是有类似模型的. 我们先考虑不修改怎么写.考虑这样做:每个点向它跳到的点连一条边,最后肯定会连成一颗以n+1为根的树(我们拿n+1代表被弹出去了).题目所 ...

随机推荐

  1. HBase 数据的多版本特性潜在的意外

    HBase做为KeyValue结构存储,在存储上是依照RowKey的字典序进行排序,对于很多应用而言这可能远远不够,好在HBase的数据可以存储多个版本,并且版本可以排序,其理论上最大的版本数目Int ...

  2. Bootstrap基础篇—常见的CSS类

    一.标题 标签 大小 h1 36px h2 30px h3 24px h4 18px h5 14px h6 12px 二.常见的内联样式 标签 用途 del 删除的文本 s 无用的文本 ins 插入的 ...

  3. Ubuntu卡在logo界面

    对于这个问题,我也是在最近一次偶然的机会中发现的. 我重装了了Ubuntu 18.04, 很多东西需要重新配置,  有个刚性需求就是配置shadowsocks实现***,对于从windows向linu ...

  4. Python 函数参数类型大全(非常全!!!)

    Python 函数参数类型大全(非常全!!!) 1.在python编写程序里面具有函数文档,它的主要作用是为了让别人可以更好的理解你的函数,所以这是一个好习惯,访问函数文档的方式是: MyFuncti ...

  5. TW实习日记:第22天

    今天开发项目的还没完成的功能点,没什么难的,样式复制粘贴,JSON表单配一配,接口调一调,基本就完成了.不过中间在写后台的一些接口时,发现被自己之前写的一些方法给坑了.为什么这样说呢,因为在之前的几个 ...

  6. linux学习总结----mongoDB总结

    dbhelper.py 用户登录和注册(加密算法) 加密导包 import hashlib 或者使用Md5 加密 MongoDB ->JSON service mysql start servi ...

  7. nodejs笔记--express篇(五)

    创建一个express + ejs的项目 express -e testEjsWebApp cd testEjsWebApp npm install http://localhost:3000 Usa ...

  8. CP文件覆盖问题

    # \cp -r -a aaa/* /bbb[这次是完美的,没有提示按Y.传递了目录属性.没有略过目录]

  9. Log Files

    Description Nikolay has decided to become the best programmer in the world! Now he regularly takes p ...

  10. YaoLingJump开发者日志(六)

      作为一只天才魔法少女狐,不会魔法怎么行?于是我给瑶玲增加了一个技能:魔法弹.   当然,能使用魔法的前提是得有个魔杖,像这样:   魔杖不仅能让瑶玲使用魔法,当瑶玲被攻击时还能提供2s的无敌状态: ...