Problem Description
Ali has taken the Computer Organization and Architecture course this term. He learned that there may be dependence between instructions, like WAR (write after read), WAW, RAW. If the distance between two instructions is less than the Safe Distance, it will result in hazard, which may cause wrong result. So we need to design special circuit to eliminate hazard. However the most simple way to solve this problem is to add bubbles (useless operation), which means wasting time to ensure that the distance between two instructions is not smaller than the Safe Distance. The definition of the distance between two instructions is the difference between their beginning times. Now we have many instructions, and we know the dependent relations and Safe Distances between instructions. We also have a very strong CPU with infinite number of cores, so you can run as many instructions as you want simultaneity, and the CPU is so fast that it just cost 1ns to finish any instruction. Your job is to rearrange the instructions so that the CPU can finish all the instructions using minimum time.
 
Input
The input consists several testcases. The first line has two integers N, M (N <= 1000, M <= 10000), means that there are N instructions and M dependent relations. The following M lines, each contains three integers X, Y , Z, means the Safe Distance between X and Y is Z, and Y should run after X. The instructions are numbered from 0 to N - 1.
 
Output
Print one integer, the minimum time the CPU needs to run.
 
Sample Input
5 2
1 2 1
3 4 1
 
Sample Output
2
 
拓扑排序
还是多线程的
题意:有n个指令m个要求     例如 X Y Z 代表 指令Y必须在指令X后 Z秒执行 输出cpu运行的最小时间
 运行最小时间 也就是要满足最大的时间要求
  vector<node>存图 node 结构体包含 mubiao timm
  入读为零的点 tim[] 初始化为1
   tim[mp[j][i].mubiao]=max(tim[mp[j][i].mubiao],temp+mp[j][i].timm); //确保满足最大时间要求
 
 
#include<bits/stdc++.h>
using namespace std;
int n,m;
int g;
struct node
{
int mubiao;
int timm;
}gg[10005];
vector<node> mp[1005];
int tim[1005];
int in[1005];
queue<int>q;
int max(int ss,int bb)
{
if(ss>bb)
return ss;
return bb;
}
//struct node gg;
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
for(int i=0;i<n;i++)
{
mp[i].clear();
in[i]=0;
}
memset(tim,0,sizeof(tim));
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&g,&gg[i].mubiao,&gg[i].timm);
mp[g].push_back(gg[i]);
in[gg[i].mubiao]++;
}
for(int i=0;i<n;i++)
{
if(in[i]==0)
{
q.push(i);
tim[i]=1;
}
}
int re=0;
while(!q.empty())
{
int j=q.front();
q.pop();
int temp=tim[j];
if(re<=temp)
re=temp;
for(unsigned int i=0;i<mp[j].size();i++)
{
tim[mp[j][i].mubiao]=max(tim[mp[j][i].mubiao],temp+mp[j][i].timm);
if(--in[mp[j][i].mubiao]==0)
{
q.push(mp[j][i].mubiao);
}
}
}
printf("%d\n",re);
}
return 0;
}

hdu4109 topsort的更多相关文章

  1. 拓扑排序(topsort)

    本文将从以下几个方面介绍拓扑排序: 拓扑排序的定义和前置条件 和离散数学中偏序/全序概念的联系 典型实现算法解的唯一性问题 Kahn算法 基于DFS的算法 实际例子 取材自以下材料: http://e ...

  2. POJ 2762 Going from u to v or from v to u?(强联通 + TopSort)

    题目大意: 为了锻炼自己的儿子 Jiajia 和Wind 把自己的儿子带入到一个洞穴内,洞穴有n个房间,洞穴的道路是单向的. 每一次Wind 选择两个房间  x 和 y,   让他的儿子从一个房间走到 ...

  3. poj1094 topsort

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 32275   Accepted: 11 ...

  4. POJ - 3249 Test for Job (DAG+topsort)

    Description Mr.Dog was fired by his company. In order to support his family, he must find a new job ...

  5. 拓扑排序 topsort详解

    1.定义 对一个有向无环图G进行拓扑排序,是将G中所有顶点排成一个线性序列,通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列. 举例: h3 { marg ...

  6. poj 3648 2-SAT建图+topsort输出结果

    其实2-SAT类型题目的类型比较明确,基本模型差不多是对于n组对称的点,通过给出的限制条件建图连边,然后通过缩点和判断冲突来解决问题.要注意的是在topsort输出结果的时候,缩点后建图需要反向连边, ...

  7. Luogu3119 草鉴定-Tarjan+Topsort

    Solution 简单的$Tarjan$题. 有大佬现成博客 就不写了 → 传送门 Code #include<cstdio> #include<cstring> #inclu ...

  8. 图论——topsort

    今天学习topsort,明天强联通分量.topsort是一种在DAG(有向无环图)中来制定顺序的方法,从入度为0开始一个一个编排顺序直至所有的边都有了顺序(或者形成了环)最后如果图中还剩下元素那一定是 ...

  9. 【UVA11324】 The Largest Clique (Tarjan+topsort/记忆化搜索)

    UVA11324 The Largest Clique 题目描述 给你一张有向图 \(G\),求一个结点数最大的结点集,使得该结点集中的任意两个结点 \(u\) 和 \(v\) 满足:要么 \(u\) ...

随机推荐

  1. python图片大小处理;

    循环一个目录将下面的所有png或者jpg文件全部缩小一定比例:     from PIL import Image import os,re work_dir = 'C:\\Users\\Admini ...

  2. Kali信息收集工具-dimtry

    帮助文档 -s和-e参数需要用到google搜索 1.获取whois主机ip信息 2.扫描端口,根据banner信息判断服务  

  3. 基于spring-boot、spring-cloud的websocket服务器多点负载均衡改造

    背景 为应对更多用户使用socket的场景,准备对存放websocket的服务器进行多点搭建并配置负载均衡. 问题 服务器上了多点负载均衡以后,基于socket的部分功能发生了有规律的失效,查看后台日 ...

  4. hadoop参数(未完).md

    我X,有违禁词.麻烦提醒一下哪个词好吗?

  5. JQuery中each方法实现

    each()函数是基本上所有的框架都提供了的一个工具类函数,通过它,你可以遍历对象.数组的属性值并进行处理. jQuery和jQuery对象都实现了该方法,对于jQuery对象,只是把each方法简单 ...

  6. java---迭代器(Iterator)

    迭代器是一种设计模式,它是一个对象,它可以遍历并选择序列中的对象,而开发人员不需要了解该序列的底层结构.迭代器通常被称为“轻量级”对象,因为创建它的代价小. Java中的Iterator功能比较简单, ...

  7. YaoLingJump开发者日志(六)

      作为一只天才魔法少女狐,不会魔法怎么行?于是我给瑶玲增加了一个技能:魔法弹.   当然,能使用魔法的前提是得有个魔杖,像这样:   魔杖不仅能让瑶玲使用魔法,当瑶玲被攻击时还能提供2s的无敌状态: ...

  8. Jenkins系列-Jenkins初始化配置

    初始化 访问,如:127.0.0.1:8088/Jenkins 第一次要求输入密码,初始密码在文件中查看. 执行以下命令查看 $ cat ${USER_HOME}\.jenkins\secrets\i ...

  9. Apache与Tomcat负载均衡

    Apache HTTP Server 与 Tomcat 的三种连接方式JK,http_proxy,ajp_proxy.下面逐个介绍一下(本篇介绍的示例都是基于前面介绍的已经搭建好的Tomcat集群,都 ...

  10. 移除 ios 上 input 的默认样式

    input{ -webkit-appearance:none; }