Problem Description
Ali has taken the Computer Organization and Architecture course this term. He learned that there may be dependence between instructions, like WAR (write after read), WAW, RAW. If the distance between two instructions is less than the Safe Distance, it will result in hazard, which may cause wrong result. So we need to design special circuit to eliminate hazard. However the most simple way to solve this problem is to add bubbles (useless operation), which means wasting time to ensure that the distance between two instructions is not smaller than the Safe Distance. The definition of the distance between two instructions is the difference between their beginning times. Now we have many instructions, and we know the dependent relations and Safe Distances between instructions. We also have a very strong CPU with infinite number of cores, so you can run as many instructions as you want simultaneity, and the CPU is so fast that it just cost 1ns to finish any instruction. Your job is to rearrange the instructions so that the CPU can finish all the instructions using minimum time.
 
Input
The input consists several testcases. The first line has two integers N, M (N <= 1000, M <= 10000), means that there are N instructions and M dependent relations. The following M lines, each contains three integers X, Y , Z, means the Safe Distance between X and Y is Z, and Y should run after X. The instructions are numbered from 0 to N - 1.
 
Output
Print one integer, the minimum time the CPU needs to run.
 
Sample Input
5 2
1 2 1
3 4 1
 
Sample Output
2
 
拓扑排序
还是多线程的
题意:有n个指令m个要求     例如 X Y Z 代表 指令Y必须在指令X后 Z秒执行 输出cpu运行的最小时间
 运行最小时间 也就是要满足最大的时间要求
  vector<node>存图 node 结构体包含 mubiao timm
  入读为零的点 tim[] 初始化为1
   tim[mp[j][i].mubiao]=max(tim[mp[j][i].mubiao],temp+mp[j][i].timm); //确保满足最大时间要求
 
 
#include<bits/stdc++.h>
using namespace std;
int n,m;
int g;
struct node
{
int mubiao;
int timm;
}gg[10005];
vector<node> mp[1005];
int tim[1005];
int in[1005];
queue<int>q;
int max(int ss,int bb)
{
if(ss>bb)
return ss;
return bb;
}
//struct node gg;
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
for(int i=0;i<n;i++)
{
mp[i].clear();
in[i]=0;
}
memset(tim,0,sizeof(tim));
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&g,&gg[i].mubiao,&gg[i].timm);
mp[g].push_back(gg[i]);
in[gg[i].mubiao]++;
}
for(int i=0;i<n;i++)
{
if(in[i]==0)
{
q.push(i);
tim[i]=1;
}
}
int re=0;
while(!q.empty())
{
int j=q.front();
q.pop();
int temp=tim[j];
if(re<=temp)
re=temp;
for(unsigned int i=0;i<mp[j].size();i++)
{
tim[mp[j][i].mubiao]=max(tim[mp[j][i].mubiao],temp+mp[j][i].timm);
if(--in[mp[j][i].mubiao]==0)
{
q.push(mp[j][i].mubiao);
}
}
}
printf("%d\n",re);
}
return 0;
}

hdu4109 topsort的更多相关文章

  1. 拓扑排序(topsort)

    本文将从以下几个方面介绍拓扑排序: 拓扑排序的定义和前置条件 和离散数学中偏序/全序概念的联系 典型实现算法解的唯一性问题 Kahn算法 基于DFS的算法 实际例子 取材自以下材料: http://e ...

  2. POJ 2762 Going from u to v or from v to u?(强联通 + TopSort)

    题目大意: 为了锻炼自己的儿子 Jiajia 和Wind 把自己的儿子带入到一个洞穴内,洞穴有n个房间,洞穴的道路是单向的. 每一次Wind 选择两个房间  x 和 y,   让他的儿子从一个房间走到 ...

  3. poj1094 topsort

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 32275   Accepted: 11 ...

  4. POJ - 3249 Test for Job (DAG+topsort)

    Description Mr.Dog was fired by his company. In order to support his family, he must find a new job ...

  5. 拓扑排序 topsort详解

    1.定义 对一个有向无环图G进行拓扑排序,是将G中所有顶点排成一个线性序列,通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列. 举例: h3 { marg ...

  6. poj 3648 2-SAT建图+topsort输出结果

    其实2-SAT类型题目的类型比较明确,基本模型差不多是对于n组对称的点,通过给出的限制条件建图连边,然后通过缩点和判断冲突来解决问题.要注意的是在topsort输出结果的时候,缩点后建图需要反向连边, ...

  7. Luogu3119 草鉴定-Tarjan+Topsort

    Solution 简单的$Tarjan$题. 有大佬现成博客 就不写了 → 传送门 Code #include<cstdio> #include<cstring> #inclu ...

  8. 图论——topsort

    今天学习topsort,明天强联通分量.topsort是一种在DAG(有向无环图)中来制定顺序的方法,从入度为0开始一个一个编排顺序直至所有的边都有了顺序(或者形成了环)最后如果图中还剩下元素那一定是 ...

  9. 【UVA11324】 The Largest Clique (Tarjan+topsort/记忆化搜索)

    UVA11324 The Largest Clique 题目描述 给你一张有向图 \(G\),求一个结点数最大的结点集,使得该结点集中的任意两个结点 \(u\) 和 \(v\) 满足:要么 \(u\) ...

随机推荐

  1. flume 整合 kafka

    flume 整合 kafka:   flume:高可用的,高可靠的,分布式的海量日志采集.聚合和传输的系统. kafka:分布式的流数据平台.   flume 采集业务日志,发送到kafka   一. ...

  2. 最小生成树与Prim算法

    最小生成树(MST) 定义 首先是一棵树(废话 其次没有回路(废话 包含全部顶点和V-1条边 边的权重和最小!!!!! 所以如果是单棵最小生成树,至少说明图是连通的.不然就是森林. 生成思路 既然是根 ...

  3. nginx web服务器的安装使用

    nginx是一个web服务器(高性能web服务器),类似于apache服务器和iis服务器,由于nginx服务器具有轻量级高并发的特点,目前nginx的使用已经超越了apache. nginx介绍:n ...

  4. Turtlebot

    Turtlebot2 数据分析: imu信息:只有z轴的旋转yaw,没有xy的角速度. odom:利用轮速计,提供平移变换,没有z方向的平移. 好的网站,详细介绍了turtlebot的使用:https ...

  5. LeetCode 95——不同的二叉搜索树 II

    1. 题目 2. 解答 以 \(1, 2, \cdots, n\) 构建二叉搜索树,其中,任意数字都可以作为根节点来构建二叉搜索树.当我们将某一个数字作为根节点后,其左边数据将构建为左子树,右边数据将 ...

  6. 卸载CDH5.7

    CDH5.7卸载1.记录用户数据目录2.关闭所有服务2.1在CM中,选择某个集群,然后停止集群.2.2逐个关闭CDH中的服务3.删除parcels4.删除集群5.卸载Cloudera manager ...

  7. ZOJ 3686 A Simple Tree Problem(线段树)

    Description Given a rooted tree, each node has a boolean (0 or 1) labeled on it. Initially, all the ...

  8. 单源最短路——dijkstra算法

    Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 问 ...

  9. Thunder团队第五周 - Scrum会议2

    Scrum会议2 小组名称:Thunder 项目名称:i阅app Scrum Master:胡佑蓉 工作照片: 参会成员: 王航:http://www.cnblogs.com/wangh013/ 李传 ...

  10. ArrayList中modCount的作用

    在ArrayList中有个成员变量modCount,继承于AbstractList. 这个成员变量记录着集合的修改次数,也就每次add或者remove它的值都会加1.这到底有什么用呢? 先看下面一段测 ...