HDOJ(HDU).1258 Sum It Up (DFS) [从零开始DFS(6)]

点我挑战题目

从零开始DFS

HDOJ.1342 Lotto [从零开始DFS(0)] — DFS思想与框架/双重DFS

HDOJ.1010 Tempter of the Bone [从零开始DFS(1)] —DFS四向搜索/奇偶剪枝

HDOJ(HDU).1015 Safecracker [从零开始DFS(2)] —DFS四向搜索变种

HDOJ(HDU).1016 Prime Ring Problem (DFS) [从零开始DFS(3)] —小结:做DFS题目的关注点

HDOJ(HDU).1035 Robot Motion [从零开始DFS(4)]—DFS题目练习

HDOJ(HDU).1241 Oil Deposits(DFS) [从零开始DFS(5)] —DFS八向搜索/双重for循环遍历

HDOJ(HDU).1258 Sum It Up (DFS) [从零开始DFS(6)] —DFS双重搜索/去重技巧

HDOJ(HDU).1045 Fire Net [从零开始DFS(7)]—DFS练习/check函数的思想

题意分析

每组数据给出要凑出的目标数字num和数字个数n,然后依次给出n个数字。要求从n个数字中选出若干个数字,是的数字之和为nun。重复的组合只输出一次。

和之前做过的选数字的题目类似,也可以采用DFS的思想来做。这道题与HDOJ.1342 Lotto [从零开始DFS(0)]及其的相似:每个数字有2种选择,选/不选,只要我选择的这些数字的和为num就行了。但是不难想到会有重复的组合出现,例如给出的样例3:

400 12 50 50 50 50 50 50 25 25 25 25 25 25

要求从12个数字中选择出若干数字使得总和为400,我们可以发现选择6个50和4个25即可。那么若按照HDOJ.1342的思想,选/不选,问题就会出现:要从6个25中选4个25,会有C(6,4)中情况,也就是说最后的结果会多出11组相同的解。这显然不符合题意。

问题的关键在于如何去重,最先想到也是最容易想到的就是把每组解保存下来,如果遇到重复的只输出一组即可。很明显这种方法实现起来耗费的工程量是巨大的,非常麻烦。回到DFS的核心:递归。我们对于递归做出一些约束,当满足一定条件时,下面搜索的解会造成重复,就终止递归。这样得到的解,均是非重复的。关键就是找到这样的条件,或者说为递归创造这样的条件。

上代码。

代码总览

/*
Title:HDOJ.1258
Author:pengwill
Date:2017-2-8
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int num,n,pos;
int a[15],b[15];
bool judge = false;
void output(int depth)
{
for(int i =0 ;i< depth; ++i)
if(!i) printf("%d",b[i]);
else printf("+%d",b[i]);
printf("\n");
}
void dfs(int depth,int sum,int pos)
{
if(sum == num) {judge = true;output(depth); return;}
if(sum>num) return;// 超出了 终止递归
if(pos>=n) return; //选择的数的位置超出数据范围
b[depth] = a[pos];
dfs(depth+1,sum+a[pos],pos+1);
while(pos+1<n&&a[pos] == a[pos+1]) pos++;//关键
dfs(depth,sum,pos+1); }
int main()
{
//freopen("in.txt","r",stdin);
while(scanf("%d%d",&num,&n) && num){
printf("Sums of %d:\n",num);
for(int i = 0; i<n; ++i) scanf("%d",&a[i]);
judge = false;
dfs(0,0,0);
//output
if(judge == false) printf("NONE\n");
}
return 0;
}

还是按照HDOJ.1342 Lotto [从零开始DFS(0)]中写到的双重DFS的办法(即选/不选的思想),解决此题。

递归边界:当数字的和为num时,或者和超出了num,或者要选择的数字位置超出了n,终止搜索。

关键是下面这几句。

    dfs(depth+1,sum+a[pos],pos+1);
while(pos+1<n&&a[pos] == a[pos+1]) pos++;//关键
dfs(depth,sum,pos+1);

首先是默认选择了pos这个位置的数字然后进行dfs。下面一个while循环表示如果下一个待选数字和本位置的待选数字一样的话,就跳过,一直跳到下一个待选数字不同的位置。如样例3:

400 12 50 50 50 50 50 50 25 25 25 25 25 25

就会从第一个50一直跳到最后一个50(下一个数字是25)。貌似看起来得不到正确结果,当然在第一层dfs不选择50的情况是没有正确解的。不放我们看一下下一层dfs,即选择了第一个50后的dfs。

进入第二层dfs依旧会有2种选择,要么选择第二个50,要么后续的50一个都不选。当然这时候一个50都不选的情况也是没有正确解的,继续看第三层。

进入第三层dfs还是会有2种选择,要么选择第三个50,要么后续的50一个都不选。但让后续50一个都不选的情况也没有正确解。

…………

依次类推,不难发现,这条while语句的作用就是:营造单一的选1个50,选2个50,选3个50这样的情况,从而避免了重复解的出现。

HDOJ(HDU).1258 Sum It Up (DFS)的更多相关文章

  1. (step4.3.4)hdu 1258(Sum It Up——DFS)

    题目大意:输入t,n,接下来有n个数组成的一个序列.输出总和为t的子序列 解题思路:DFS 代码如下(有详细的注释): #include <iostream> #include <a ...

  2. HDU 1258 Sum It Up(DFS)

    题目链接 Problem Description Given a specified total t and a list of n integers, find all distinct sums ...

  3. HDOJ(HDU).1016 Prime Ring Problem (DFS)

    HDOJ(HDU).1016 Prime Ring Problem (DFS) [从零开始DFS(3)] 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架 ...

  4. HDU 1258 Sum It Up(dfs 巧妙去重)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1258 Sum It Up Time Limit: 2000/1000 MS (Java/Others) ...

  5. hdu 1258 Sum It Up (dfs+路径记录)

    pid=1258">Sum It Up Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  6. hdu 1258 Sum It Up(dfs+去重)

    题目大意: 给你一个总和(total)和一列(list)整数,共n个整数,要求用这些整数相加,使相加的结果等于total,找出所有不相同的拼凑方法. 例如,total = 4,n = 6,list = ...

  7. HDU 1258 Sum It Up (DFS)

    Sum It Up Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total S ...

  8. HDU 1258 Sum It Up

    Sum It Up Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total S ...

  9. 【HDOJ】1258 Sum It Up

    典型的深搜,剪枝的时候需要跳过曾经搜索过的相同的数目,既满足nums[i]=nums[i-1]&&visit[i-1]==0,visit[i-1]==0可以说明该点已经测试过. #in ...

随机推荐

  1. Object里面的方法

    object里面有12个方法,没写完,写一些部分代表 toString():输出对象的地址字符串(hashcode码) equals():用的是==,比较的是引用,在有些类里面是重写了这个方法的,重写 ...

  2. 【转】cocos2dx3.2学习笔记之Director(导演类)

    转载:https://blog.csdn.net/u013435551/article/details/38579747 在Cocos2d-x中,把统筹游戏大局的类抽象为导演类(Director),D ...

  3. [CF294B]Shaass and Bookshelf

    问题描述 Shaass拥有n本书.他想为他的所有书制作一个书架,并想让书架的长宽尽量小.第i本书的厚度是t[i],且这本书的纸张宽度是w[i].书的厚度是1或2,所有书都有同样的高度(即书架的高是均匀 ...

  4. 【Linux 运维】linux系统查看版本信息

    查看linux系统版本信息: [root@kvm-host~]# cat /proc/version       (Linux查看当前操作系统版本信息)Linux version 3.10.0-514 ...

  5. Ext JS 6学习文档-第8章-主题和响应式设计

    Ext JS 6学习文档-第8章-主题和响应式设计 主题和响应式设计 本章重点在 ExtJS 应用的主题和响应式设计.主要有以下几点内容: SASS 介绍和入门 主题 响应式设计 SASS 介绍和入门 ...

  6. Python—字典(当索引不好用时)

    一.定义与概念 1.字典是针对非序列集合而提供的一种数据类型 举例:检索学生信息. “<键><值>对”. 键(即身份证号码) 值(即学生信息). “键值对”例子 姓名和电话号码 ...

  7. 第十七次ScrumMeeting会议

    第十七次Scrum Meeting 时间:2017/12/7 地点:线上+主235 人员:蔡帜 王子铭 游心 解小锐 王辰昱 李金奇 杨森 陈鑫 赵晓宇 照片: 目前工作进展 名字 今日 明天的工作 ...

  8. springboot 整合apache shiro

    这几天因为项目需要,学习了下shiro,由此留下一些记录,也希望对初学shiro的朋友有帮助. springboot 是这两年新兴起来的一个项目,它的出现是为了减少springmvc开发过程中需要引入 ...

  9. Android 开发错误集锦

    1. eclipse的Device中不显示手机 在eclipse中连接不上手机,出现adb server didn't ACK  fail to start daemon 错误. 出现这种原因是因为a ...

  10. 读写INI文件操作类

    详情介绍:http://zh.wikipedia.org/wiki/INI%E6%96%87%E4%BB%B6 示例: 下面是一个虚拟的程序,其INI文件有两个小节,前面的小节是用来设置拥有者的信息, ...