Description

An oligarch Vovan, as many other oligarchs, transports oil from West Cuckooland to East Cuckooland. He owns a huge oil-producing station in West Cuckooland, an equally huge oil-refining station in East Cuckooland and a system of oil pipelines to move oil from one country to another. Vovan has a map of these pipelines on his table. He would like to know, how much oil this system can transport.
Each pipeline connects some pair of stations. All stations on the map are numbered: the producing station has number 1, the refining one has number N and the transit ones have numbers from 2 toN − 1, inclusive. Each pipeline can transport a limited quantity of oil, but in any direction. Vovan doesn't know that the Earth is round, so each station on his map has plane coordinates (xi and yi are the coordinates of i-th station). The pipelines are represented as line segments. Any pair of pipelines on the map can intersect only at endpoints. It is known, that the oil-producing station has the smallest x-coordinate of all stations, and the oil-refining station has the largest x-coordinate.

Input

The first line contains an integer N. 2 ≤ N ≤ 10000. Next N lines contain the coordinates of the stations (xiyi) separated with a space. Coordinates are integers with absolute values no more than 108. Next line contains an integer M — the number of oil pipelines. Next M lines contain specifications of pipelines: for each pipeline, the three numbers describe a pair of stations connected by it and its flow capacity — an integer from 1 to 108. It is guaranteed that Vovan's system can transport some positive quantity of oil, and can't transport more than 2·109 oil units.

Output

In the first line output the maximal quantity of oil that the Vovan's system can transport. In the following M lines output the transportation plan — triples of numbers (ABC), denoting that C oil units should flow from station A to station B. All pipelines should be presented exactly once in this list (even those, in which the oil flow is equal to zero). The values of C should always be non-negative.

题目大意:从源点1到汇点n有m条双向边,每条边有一个容量,问从1到n的最大流量,并输出每条边的流量(如果是0要输出0,是从流入点到流出点)

思路:直接从1到n求最大流过了……本意是要转平面图最短路径的?

PS:根据那个不知道什么定理,好像边数最多是2*N-3

代码(437MS):

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std; const int MAXN = ;
const int MAXE = MAXN * ;
const int INF = 0x7fffffff; inline void _min(int &a, const int &b) {
if(a > b) a = b;
} struct SAP {
int head[MAXN], gap[MAXN], dis[MAXN], pre[MAXN], cur[MAXN];
int next[MAXE], to[MAXE], cap[MAXE], flow[MAXE];
int ecnt, n, st, ed; void init() {
memset(head, , sizeof(head));
ecnt = ;
} void add_edge2(int u, int v, int c) {
to[ecnt] = v; cap[ecnt] = c; flow[ecnt] = ; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; cap[ecnt] = c; flow[ecnt] = ; next[ecnt] = head[v]; head[v] = ecnt++;
} void bfs() {
memset(dis, 0x3f, sizeof(dis));
queue<int> que; que.push(ed);
dis[ed] = ;
while(!que.empty()) {
int u = que.front(); que.pop();
++gap[dis[u]];
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(cap[p ^ ] && dis[v] > n) {
dis[v] = dis[u] + ;
que.push(v);
}
}
}
} int Max_flow(int ss, int tt, int nn) {
st = ss, ed = tt, n = nn;
int ans = , minFlow = INF, u;
for(int i = ; i <= n; ++i) {
cur[i] = head[i];
gap[i] = ;
}
u = pre[st] = st;
bfs();
while(dis[st] < n) {
bool flag = false;
for(int &p = cur[u]; p; p = next[p]) {
int &v = to[p];
if(cap[p] > flow[p] && dis[u] == dis[v] + ) {
flag = true;
_min(minFlow, cap[p] - flow[p]);
pre[v] = u;
u = v;
if(u == ed) {
ans += minFlow;
while(u != st) {
u = pre[u];
flow[cur[u]] += minFlow;
flow[cur[u] ^ ] -= minFlow;
}
minFlow = INF;
}
break;
}
}
if(flag) continue;
int minDis = n - ;
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(cap[p] > flow[p] && dis[v] < minDis) {
minDis = dis[v];
cur[u] = p;
}
}
if(--gap[dis[u]] == ) break;
++gap[dis[u] = minDis + ];
u = pre[u];
}
return ans;
}
} G; int x, y, n, m, a, b, c;
int id[MAXE]; int main() {
while(scanf("%d", &n) != EOF) {
for(int i = ; i <= n; ++i) scanf("%d%d", &x, &y);
G.init();
scanf("%d", &m);
for(int i = ; i <= m; ++i) {
scanf("%d%d%d", &a, &b, &c);
id[i] = G.ecnt;
G.add_edge2(a, b, c);
}
printf("%d\n", G.Max_flow(, n, n));
for(int i = ; i <= m; ++i) {
int &p = id[i];
if(G.flow[p] >= ) printf("%d %d %d\n", G.to[p ^ ], G.to[p], G.flow[p]);
else printf("%d %d %d\n", G.to[p], G.to[p ^ ], G.flow[p ^ ]);
}
}
}

URAL 1664 Pipeline Transportation(平面图最大流)的更多相关文章

  1. BZOJ 1001 [BeiJing2006] 狼抓兔子(平面图最大流)

    题目大意 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的.而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...

  2. 【 UVALive - 5095】Transportation(费用流)

    Description There are N cities, and M directed roads connecting them. Now you want to transport K un ...

  3. s - t 平面图最大流 (附例题 bzoj 1001)

    以下均移自 周冬的<两极相通-浅析最大最小定理在信息学竞赛中的应用> 平面图性质 1.(欧拉公式)如果一个连通的平面图有n个点,m条边和f个面,那么f=m-n+2 2.每个平面图G都有一个 ...

  4. CodeForces E. Goods transportation【最大流+dp最小割】

    妙啊 首先暴力建图跑最大流非常简单,s向每个i连流量为p[i]的边,每个i向t连流量为s[i]的边,每个i向j连流量为c的边(i<j),但是会又T又M 考虑最大流=最小割 然后dp求最小割,设f ...

  5. 刷题向》图论》BZOJ1001 平面图最大流、平面图最小割、单源最短路(easy+)

    坦白的说这是一道水题,但是因为是BZOJ上的1001,所以这道题有着特殊的意义. 关于最大流转最短路的博客链接如下:关于最大流转最短路两三事 这道题的图形很规矩,所以建边和建点还是很简单的. 题目如下 ...

  6. BZOJ-1001 狼抓兔子 (最小割-最大流)平面图转对偶图+SPFA

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MB Submit: 14686 Solved: 3513 [Submit][ ...

  7. 【转载】图论 500题——主要为hdu/poj/zoj

    转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...

  8. 【HDOJ图论题集】【转】

    =============================以下是最小生成树+并查集====================================== [HDU] How Many Table ...

  9. hdu图论题目分类

    =============================以下是最小生成树+并查集====================================== [HDU] 1213 How Many ...

随机推荐

  1. <CPP学习 第二天> 字符串的输入 及 String类

    今天简单的学习了字符串的输入以及C++的String类. 1.面向行的输入: getline(); getline()函数读取整行,通过回车键输入的换行符来确定输入结尾.要调用这种方法,可以使用cin ...

  2. MySQL 5.7增强半同步测试

            we've know the machenism of semi-synchronous replication in my previous article,let's do som ...

  3. QueryableHelper

    using System; using System.Collections.Generic; using System.Linq; using System.Linq.Expressions; us ...

  4. 大数据学习--day03(运算符、流程控制语句)

    运算符.流程控制语句 自增自减容易出错的地方: 扩展的赋值运算符  a+=b 等同于 a = a+b;  扩展的赋值运算符 隐含了一个类型的强制转换 & && 有何区别   & ...

  5. Java常用容器对比

    ArrayList与Vector ArrayList和Vector内部都是由数组实现的,数组实现的优点就是支持元素的随机访问(O(1)),但是在对元素进行插入和删除操作时,需要向后或向前移动数组,这样 ...

  6. vowels_单元音

    vowels(美式): 单元音: [i]:需要用劲喊出类似于“yi”的四声,费力咧开嘴,单词eat.need.thief.meet. [?]:卷舌音,单词bird.her.worry.certain. ...

  7. Python学习手册之捕获组和特殊匹配字符串

    在上一篇文章中,我们介绍了 Python 的字符类和对元字符进行了深入讲解,现在我们介绍 Python 的捕获组和特殊匹配字符串.查看上一篇文章请点击:https://www.cnblogs.com/ ...

  8. Grep/find查找文件

    1. 查找secret 函数所在的文件位置grep -rn secret * grep -rn "secret" * 2. find 查找当前目录下,比while2 时间新并且名字 ...

  9. python--函数汇总

    函数: 定义和特性: 定义:函数是指将一组语句的集合通过一个名字(函数名)封装起来,要想执行这个函数,只需调用其函数名()即可 特性:1,代码重用2,保持一致性3,可扩展性 函数的创建: 一,格式:p ...

  10. 成都Uber优步司机奖励政策(3月30日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...