hdu5293(2015多校1)--Tree chain problem(树状dp)
Tree chain problem
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 262 Accepted Submission(s): 59
There are m chain on the tree, Each chain has a certain weight. Coco would like to pick out some chains any two of which do not share common vertices.
Find out the maximum sum of the weight Coco can pick
For each tests:
First line two positive integers n, m.(1<=n,m<=100000)
The following (n - 1) lines contain 2 integers ai bi denoting an edge between vertices ai and bi (1≤ai,bi≤n),
Next m lines each three numbers u, v and val(1≤u,v≤n,0<val<1000), represent the two end points and the weight of a tree chain.
A single integer, the maximum number of paths.
1
7 3
1 2
1 3
2 4
2 5
3 6
3 7
2 3 4
4 5 3
6 7 3
6HintStack expansion program: #pragma comment(linker, "/STACK:1024000000,1024000000")
题目大意:有一颗n个节点的数。给出n-1条边(无向),还有m条链,每条链链接两个顶点(按lca的方式链接)。链存在一个权值w。如今想要挑选一些链,挑选的链中不能出现同样的节点,问能够挑选出的最大的权重是多少?
要求权值最大,依照树形dp的思路去考虑,那么dp[i]为以第i个点位根节点的子树的最优解。dp[i]的状态转移公式,有两种可能,第一种:第i个节点上不出现链,那么dp[i] = ∑(dp[k] | k为i的子节点);另外一种:第i个节点上出现链。假设选择增加这条链,那么dp[i] = w(链的权值) + ∑(dp[k] | k为链上的节点的子节点) = w + ∑(sum[k]
| k为链上的节点 ) - ∑(dp[k] | k为链上的节点) 。sum[i]表示i节点的全部子节点的dp和,在 ∑(sum[k] | k为链上的节点 ) - ∑(dp[k] | k为链上的节点) 中减去的dp[k]会由它的父节点的sum补全。
这样就得到了状态转移公式。
还有要计算给出的链的两个顶点的lca(用于更新dp的值),在更新dp值的时候须要计算链上节点的(sun的和)(dp的和),使用树状数组来计算。对全部节点进行dfs。对点进行又一次编号。每到达一个点和每离开一个点都要编号,记录在l[i]和r[i]中,当计算玩一个sum[i]值后。加到树状数组c1中(l[i]位置加正值,r[i]位置加负值)。计算完一个dp[i]值后,加到树状数组c2中(l[i]位置加正值,r[i]位置加负值)。依照新的编号进行树状数组计算区间和。也就能够得到链上的节点的和
总结:
1、建树,题目给出的(无向边)。要加双边
2、dfs,建立rmq[i][j]:i节点的第2^j个父节点,对节点又一次编号
3、对给出的两个顶点求lca。(代码中用rmq求lca)
4、树状数组,求区间和。
5、深搜,完毕树形dp,按状态转移方程计算每个节点的值,使用树状数组计算链上节点的和
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std ;
#pragma comment(linker, "/STACK:1024000000,1024000000")
#define maxn 200050
struct E{
int v , next ;
}edge[maxn] ;
int head[maxn] , cnt ;
struct node{
int u , v , w ;
int lca ;
}p[maxn] ;
int dep[maxn] , rmq[maxn][20] ;
int l[100010] , r[maxn] , cid ;
vector <int> vec[maxn] ;
int dp[maxn] , sum[maxn] ;
int c1[maxn] , c2[maxn] ;
void add_E(int u,int v) {
edge[cnt].v = v ;
edge[cnt].next = head[u] ; head[u] = cnt++ ;
edge[cnt].v = u ;
edge[cnt].next = head[v] ; head[v] = cnt++ ;
}
void dfs(int fa,int u) {
l[u] = ++cid ;
int i , j , v ;
for(i = head[u] ; i != -1 ; i = edge[i].next) {
v = edge[i].v ;
if( v == fa ) continue ;
dep[v] = dep[u] + 1 ;
rmq[v][0] = u ;
for(j = 1 ; j < 20 ; j++)
rmq[v][j] = rmq[ rmq[v][j-1] ][j-1] ;
dfs(u,v) ;
}
r[u] = ++cid ;
}
int lca(int u,int v) {
if( dep[u] < dep[v] )
swap(u,v) ;
int i , j ;
for(i = 19 ; i >= 0 ; i--) {
if( dep[ rmq[u][i] ] >= dep[v] )
u = rmq[u][i] ;
if( u == v ) return u ;
}
for(i = 19 ; i >= 0 ; i--) {
if( rmq[u][i] != rmq[v][i] ){
u = rmq[u][i] ;
v = rmq[v][i] ;
}
}
return rmq[u][0] ;
}
int lowbit(int x) {
return x & -x ;
}
void add(int i,int k,int *c,int n) {
while( i <= n ) {
c[i] += k ;
i += lowbit(i) ;
}
}
int getsum(int i,int *c) {
int ans = 0 ;
while( i ) {
ans += c[i] ;
i -= lowbit(i) ;
}
return ans ;
}
void solve(int fa,int s,int n) {
dp[s] = sum[s] = 0 ;
int i , j , u , v , temp ;
for(i = head[s] ; i != -1 ;i = edge[i].next) {
v = edge[i].v ;
if( v == fa ) continue ;
solve(s,v,n) ;
sum[s] += dp[v] ;
}
dp[s] = sum[s] ;
for(i = 0 ; i < vec[s].size() ; i++) {
u = p[ vec[s][i] ].u ;
v = p[ vec[s][i] ].v ;
temp = getsum(l[u],c1) + getsum(l[v],c1) - getsum(l[u],c2) - getsum(l[v],c2) + sum[s] ;
dp[s] = max(dp[s],temp+p[vec[s][i]].w) ;
}
add(l[s],sum[s],c1,n*2) ;
add(r[s],-sum[s],c1,n*2) ;
add(l[s],dp[s],c2,n*2) ;
add(r[s],-dp[s],c2,n*2) ;
}
void init(int n) {
memset(head,-1,sizeof(head)) ;
memset(rmq,0,sizeof(rmq)) ;
memset(c1,0,sizeof(c1)) ;
memset(c2,0,sizeof(c2)) ;
cnt = cid = 0 ;
dep[1] = 1 ;
rmq[1][0] = 1 ;
for(int i = 1 ; i <= n ; i++)
vec[i].clear() ;
return ;
}
int main() {
int t , n , m ;
int i , j , u , v , w ;
//freopen("1006.in","r",stdin) ;
//freopen("t.out","w",stdout) ;
scanf("%d", &t) ;
while( t-- ) {
scanf("%d %d", &n, &m) ;
init(n) ;
for(i = 1 ; i < n ; i++) {
scanf("%d %d", &u, &v) ;
add_E(u,v) ;
}
dfs(-1,1) ;
for(i = 0 ; i < m ; i++) {
scanf("%d %d %d", &p[i].u, &p[i].v, &p[i].w) ;
p[i].lca = lca(p[i].u,p[i].v) ;
vec[ p[i].lca ].push_back(i) ;
}
solve(-1,1,n) ;
printf("%d\n", dp[1]) ;
}
return 0 ;
}
hdu5293(2015多校1)--Tree chain problem(树状dp)的更多相关文章
- 【HDU 5233】Tree chain problem (树形DP+树剖+线段树|树状数组)最大权不相交树链集
[题目] Tree chain problem Problem Description Coco has a tree, whose vertices are conveniently labeled ...
- [HDU 5293]Tree chain problem(树形dp+树链剖分)
[HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...
- poj2486--Apple Tree(树状dp)
Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7789 Accepted: 2606 Descri ...
- 刷题总结——Tree chain problem(HDU 5293 树形dp+dfs序+树状数组)
题目: Problem Description Coco has a tree, whose vertices are conveniently labeled by 1,2,…,n.There ar ...
- 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)
题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...
- Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+树状数组
C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...
- Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+ 树状数组或线段树
C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...
- [poj3321]Apple Tree(dfs序+树状数组)
Apple Tree Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 26762 Accepted: 7947 Descr ...
- POJ3321Apple Tree Dfs序 树状数组
出自——博客园-zhouzhendong ~去博客园看该题解~ 题目 POJ3321 Apple Tree 题意概括 有一颗01树,以结点1为树根,一开始所有的结点权值都是1,有两种操作: 1.改变其 ...
随机推荐
- windows10 易升 下载失败 解决方法
在你剩余最大空间的硬盘里有一个名字大概是Windows10Updata的文件夹里找到一个名字14339开头的升级镜像,把这个文件的名字用记事本保存下来方便以后使用,同时在这个文件夹里还有一个叫prod ...
- Linux(CentOS)下的JDK的安装和环境配置
下载对应版本JDK,如jdk-6u45-linux-i586-rpm.bin添加执行权限:#chmod +x jdk-6u45-linux-i586-rpm.bin安装:#./jdk-6u45-lin ...
- Java 中自定义时间格式
DateFormat df = new SimpleDateFormat("yyyy-MM-dd hh:mm:ss"); Date d = new Date(); String s ...
- 524. Longest Word in Dictionary through Deleting【Medium】【删除后得到的字典中的最长单词】
Given a string and a string dictionary, find the longest string in the dictionary that can be formed ...
- Xamarin Forms启动自带模拟器缓慢
Xamarin Forms启动自带模拟器缓慢 Xamarin Forms启动自带模拟器缓慢,在Windows 10中,Visual Studio可以使用系统自带的Hyper模拟器.但是使用时候,会长时 ...
- 【线段树】洛谷 P3372 【模板】线段树 1
动态开结点线段树板子. #include<cstdio> using namespace std; typedef long long ll; ll sumv[400005],delta[ ...
- 【最大流】BZOJ1305-[CQOI2009]dance跳舞
[题目大意] 一次舞会有n个男孩和n个女孩.每首曲子开始时,所有男孩和女孩恰好配成n对跳交谊舞.每个男孩都不会和同一个女孩跳两首(或更多)舞曲.有一些男孩女孩相互喜欢,而其他相互不喜欢(不会“单向喜欢 ...
- Manthan, Codefest 16 H. Fibonacci-ish II 大力出奇迹 莫队 线段树 矩阵
H. Fibonacci-ish II 题目连接: http://codeforces.com/contest/633/problem/H Description Yash is finally ti ...
- 基于TCP通信的客户端断线重连
转载:http://www.cnblogs.com/networkcomms/p/4304362.html 源码下载 在CS程序中,断线重连应该是一个常见的功能. 此处的断线重连主要指的是服务器端因为 ...
- VUE2.0学习总结
摘要: 年后公司项目开始上vue2.0,自己对学习进行了总结,希望对大家有帮助! VUE2.0学习 vue介绍 vue是什么? https://vuefe.cn/guide vue也是一个数据驱动框架 ...