BZOJ4767 两双手(组合数学+容斥原理)
因为保证了两向量不共线,平面内任何一个向量都被这两个向量唯一表示。问题变为一张有障碍点的网格图由左上走到右下的方案数。
到达终点所需步数显然是平方级别的,没法直接递推。注意到障碍点数量很少,那么考虑容斥,即用总方案数减去经过障碍点的方案数。对每个障碍点计算其作为第一个经过的障碍点的方案数即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 510
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int t,n,m,cnt,fac[N*N<<],inv[N*N<<],f[N],ans;
struct data
{
int x,y;
void get(){x=read(),y=read();}
int operator *(const data&a) const
{
return x*a.y-y*a.x;
}
bool operator <(const data&a) const
{
return x+y<a.x+a.y;
}
}e,a,b,ban[N],v[N];
int C(int n,int m){return 1ll*fac[n]*inv[m]%P*inv[n-m]%P;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4767.in","r",stdin);
freopen("bzoj4767.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
e.get();t=read();a.get();b.get();
for (int i=;i<=t;i++) ban[i].get();
if ((e*b)%(a*b)||(e*a)%(b*a)) {cout<<;return ;}
n=(e*b)/(a*b),m=(e*a)/(b*a);
for (int i=;i<=t;i++)
if ((ban[i]*b)%(a*b)||(ban[i]*a)%(b*a));
else
{
int x=(ban[i]*b)/(a*b),y=(ban[i]*a)/(b*a);
if (x>=&&x<=n&&y>=&&y<=m) v[++cnt]=(data){x,y};
}
sort(v+,v+cnt+);
fac[]=;for (int i=;i<=n+m;i++) fac[i]=1ll*fac[i-]*i%P;
inv[]=inv[]=;for (int i=;i<=n+m;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
for (int i=;i<=n+m;i++) inv[i]=1ll*inv[i]*inv[i-]%P;
ans=C(n+m,n);
for (int i=;i<=cnt;i++)
{
f[i]=1ll*C(v[i].x+v[i].y,v[i].x);
for (int j=;j<i;j++)
if (v[i].x>=v[j].x&&v[i].y>=v[j].y)
f[i]=(f[i]-1ll*f[j]*C(v[i].x-v[j].x+v[i].y-v[j].y,v[i].x-v[j].x)%P+P)%P;
ans=(ans-1ll*f[i]*C(n-v[i].x+m-v[i].y,n-v[i].x)%P+P)%P;
}
cout<<ans;
return ;
}
BZOJ4767 两双手(组合数学+容斥原理)的更多相关文章
- BZOJ4767: 两双手【组合数学+容斥原理】
Description 老W是个棋艺高超的棋手,他最喜欢的棋子是马,更具体地,他更加喜欢马所行走的方式.老W下棋时觉得无聊,便决定加强马所行走的方式,更具体地,他有两双手,其中一双手能让马从(u,v) ...
- bzoj4767两双手 容斥+组合
4767: 两双手 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 684 Solved: 208[Submit][Status][Discuss] ...
- 2019.02.11 bzoj4767: 两双手(组合数学+容斥dp)
传送门 题意简述:你要从(0,0)(0,0)(0,0)走到(ex,ey)(ex,ey)(ex,ey),每次可以从(x,y)(x,y)(x,y)走到(x+ax,y+ay)(x+ax,y+ay)(x+ax ...
- BZOJ4767 两双手
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- bzoj 4767 两双手 - 动态规划 - 容斥原理
题目传送门 传送门I 传送门II 题目大意 一个无限大的棋盘上有一只马,设马在某个时刻的位置为$(x, y)$, 每次移动可以将马移动到$(x + A_x, y + A_y)$或者$(x + B_x, ...
- bzoj 4767: 两双手 组合 容斥
题目链接 bzoj4767: 两双手 题解 不共线向量构成一组基底 对于每个点\((X,Y)\)构成的向量拆分 也就是对于方程组 $Ax * x + Bx * y = X $ \(Ay * x + B ...
- 【BZOJ】4767: 两双手【组合数学】【容斥】【DP】
4767: 两双手 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1057 Solved: 318[Submit][Status][Discuss] ...
- 【BZOJ4767】两双手(动态规划,容斥)
[BZOJ4767]两双手(动态规划,容斥) 题面 BZOJ 题解 发现走法只有两种,并且两维坐标都要走到对应的位置去. 显然对于每个确定的点,最多只有一种固定的跳跃次数能够到达这个点. 首先对于每个 ...
- BZOJ_3129_[Sdoi2013]方程_组合数学+容斥原理
BZOJ_3129_[Sdoi2013]方程_组合数学+容斥原理 Description 给定方程 X1+X2+. +Xn=M 我们对第l..N1个变量进行一些限制: Xl < = A ...
随机推荐
- mongoengine中queryset触发网络访问机制剖析
背景 最近新上线的一个服务,偶尔会有超时告警,其主要逻辑仅仅只是简单的读/写mongodb,而且服务上线初期,流量并不大,因而理论上来说,每次请求都应该很快才对,事实上分析日志也证实90%以上的请求都 ...
- 1057: [ZJOI2007]棋盘制作
1057: [ZJOI2007]棋盘制作 https://www.lydsy.com/JudgeOnline/problem.php?id=1057 分析: 首先对于(i+j)&1的位置0-& ...
- 让pip 使用国内镜像源
让python的pip使用 国内镜像 国内源: 清华:https://pypi.tuna.tsinghua.edu.cn/simple 阿里云:http://mirrors.aliyun.com/py ...
- 关于iOS开发的各种证书
关于iOS开发的各种证书 最近在接推送服务的时候,被各种证书弄得不亦晕乎,这里记录一下一些基本的证书作用: 1. App IDs appID分明确的和通配的两种,如果要使用推送功能,只能用明确的. 2 ...
- Kubernetes网络方案的三大类别和六个场景
欢迎访问网易云社区,了解更多网易技术产品运营经验. 本文章根据网易云资深解决方案架构师 王必成在云原生用户大会上的分享整理. 今天我将分享个人对于网络方案的理解,以及网易云在交付 Kubernetes ...
- “网易有钱”sketch使用分享
本文来自网易云社区 写在开头,关于ps与sketch之间的优劣网上已经有很多分享,大家有兴趣可以百度,其中对否我们在这里不予评价.在移动互联网时代每个app从几十到上百张页面,如果用ps绘制一个个页面 ...
- Consul初体验
Preface Today I'm gonna implement a consul in my environment to discover service of MySQL da ...
- 第一阶段·Linux运维基础 第3章·文件属性、正则表达式、文件权限
01-文件属性内容介绍 02- inodeyublock讲解 03-访问oldboyfile的寻宝过程 04-inode与block小结 05-磁盘空间不足案例详解 06-Linux文件类型及拓展名 ...
- NGUI制作流光效果
效果展示: 技巧: 1.勾选UIPanel下的Normal启用UI的法线贴图,并建立带有法线贴图的UI对象(此处用NGUI自带的Reflector.Atlas中的图作为UI). 2.建立点光源并为其添 ...
- 银行系统ps:不太完善,蟹蟹评论
# 主程序运行 import time from guanli import GuanLi from atm import ATM from user import User def main(): ...