通过Spark作业将数据写入Hudi时,Spark应用的调优技巧也适用于此。如果要提高性能或可靠性,请牢记以下几点。

输入并行性:Hudi对输入进行分区默认并发度为1500,以确保每个Spark分区都在2GB的限制内(在Spark2.4.0版本之后去除了该限制),如果有更大的输入,则相应地进行调整。我们建议设置shuffle的并发度,配置项为hoodie.[insert|upsert|bulkinsert].shuffle.parallelism,以使其至少达到input_data_size/500MB。

Off-heap(堆外)内存:Hudi写入parquet文件,需要使用一定的堆外内存,如果遇到此类故障,请考虑设置类似spark.yarn.executor.memoryOverheadspark.yarn.driver.memoryOverhead的值。

Spark 内存:通常Hudi需要能够将单个文件读入内存以执行合并或压缩操作,因此执行程序的内存应足以容纳此文件。另外,Hudi会缓存输入数据以便能够智能地放置数据,因此预留一些spark.memory.storageFraction通常有助于提高性能。

调整文件大小:设置limitFileSize以平衡接收/写入延迟与文件数量,并平衡与文件数据相关的元数据开销。

时间序列/日志数据:对于单条记录较大的数据库/ nosql变更日志,可调整默认配置。另一类非常流行的数据是时间序列/事件/日志数据,它往往更加庞大,每个分区的记录更多。在这种情况下,请考虑通过.bloomFilterFPP()/bloomFilterNumEntries()来调整Bloom过滤器的精度,以加速目标索引查找时间,另外可考虑一个以事件时间为前缀的键,这将使用范围修剪并显着加快索引查找的速度。

GC调优:请确保遵循Spark调优指南中的垃圾收集调优技巧,以避免OutOfMemory错误。[必须]使用G1 / CMS收集器,其中添加到spark.executor.extraJavaOptions的示例如下:

-XX:NewSize=1g -XX:SurvivorRatio=2 -XX:+UseCompressedOops -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:CMSInitiatingOccupancyFraction=70 -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -XX:+PrintGCApplicationStoppedTime -XX:+PrintGCApplicationConcurrentTime -XX:+PrintTenuringDistribution -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp/hoodie-heapdump.hprof

OutOfMemory错误:如果出现OOM错误,则可尝试通过如下配置处理:spark.memory.fraction = 0.2,spark.memory.storageFraction = 0.2允许其溢出而不是OOM(速度变慢与间歇性崩溃相比)。

以下是完整的生产配置

spark.driver.extraClassPath /etc/hive/conf
spark.driver.extraJavaOptions -XX:+PrintTenuringDistribution -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCApplicationStoppedTime -XX:+PrintGCApplicationConcurrentTime -XX:+PrintGCTimeStamps -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp/hoodie-heapdump.hprof
spark.driver.maxResultSize 2g
spark.driver.memory 4g
spark.executor.cores 1
spark.executor.extraJavaOptions -XX:+PrintFlagsFinal -XX:+PrintReferenceGC -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintAdaptiveSizePolicy -XX:+UnlockDiagnosticVMOptions -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp/hoodie-heapdump.hprof
spark.executor.id driver
spark.executor.instances 300
spark.executor.memory 6g
spark.rdd.compress true spark.kryoserializer.buffer.max 512m
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.shuffle.service.enabled true
spark.sql.hive.convertMetastoreParquet false
spark.submit.deployMode cluster
spark.task.cpus 1
spark.task.maxFailures 4 spark.yarn.driver.memoryOverhead 1024
spark.yarn.executor.memoryOverhead 3072
spark.yarn.max.executor.failures 100

调优 | Apache Hudi应用调优指南的更多相关文章

  1. 使用Apache Hudi构建大规模、事务性数据湖

    一个近期由Hudi PMC & Uber Senior Engineering Manager Nishith Agarwal分享的Talk 关于Nishith Agarwal更详细的介绍,主 ...

  2. linux+jre+apache+mysql+tomcat调优

    一.不再为Apache进程淤积.耗尽内存而困扰 0. /etc/my.cnf,在mysqld那一段加上如下一行: log-slow-queries=queries-slow.log 重启MySQL 酌 ...

  3. 【译】调优Apache Kafka集群

    今天带来一篇译文“调优Apache Kafka集群”,里面有一些观点并无太多新颖之处,但总结得还算详细.该文从四个不同的目标出发给出了各自不同的参数配置,值得大家一读~ 原文地址请参考:https:/ ...

  4. OCM_第十四天课程:Section6 —》数据库性能调优_各类索引 /调优工具使用/SQL 优化建议

    注:本文为原著(其内容来自 腾科教育培训课堂).阅读本文注意事项如下: 1:所有文章的转载请标注本文出处. 2:本文非本人不得用于商业用途.违者将承当相应法律责任. 3:该系列文章目录列表: 一:&l ...

  5. LAMP 系统性能调优之网络文件系统调优

    LAMP 系统性能调优之网络文件系统调优 2011-03-21 09:35 Sean A. Walberg 网络转载 字号:T | T 使用LAMP系统的用户,都想把自己LAMP性能提高运行的速度提高 ...

  6. 重磅!Vertica集成Apache Hudi指南

    1. 摘要 本文演示了使用外部表集成 Vertica 和 Apache Hudi. 在演示中我们使用 Spark 上的 Apache Hudi 将数据摄取到 S3 中,并使用 Vertica 外部表访 ...

  7. 使用Apache Hudi + Amazon S3 + Amazon EMR + AWS DMS构建数据湖

    1. 引入 数据湖使组织能够在更短的时间内利用多个源的数据,而不同角色用户可以以不同的方式协作和分析数据,从而实现更好.更快的决策.Amazon Simple Storage Service(amaz ...

  8. Apache Hudi使用简介

    Apache Hudi使用简介 目录 Apache Hudi使用简介 数据实时处理和实时的数据 业务场景和技术选型 Apache hudi简介 使用Aapche Hudi整体思路 Hudi表数据结构 ...

  9. Apache Hudi C位!云计算一哥AWS EMR 2020年度回顾

    1. 概述 成千上万的客户在Amazon EMR上使用Apache Spark,Apache Hive,Apache HBase,Apache Flink,Apache Hudi和Presto运行大规 ...

随机推荐

  1. Docker搭建代码检测平台SonarQube并检测maven项目

    1 前言 良好的代码习惯是一个优秀程序员应该具备的品质,但靠人的习惯与记忆来保证代码质量,始终不是一件靠谱的事.在计算机行业应该深知,只要是人为的,都会有操作风险.本文讲解如何通过Docker搭建代码 ...

  2. flask之CBV模式

    flask_cbv.py ''' flask中的CBV模式: (1)导入views模块: from flask import views (2)定义类,继承views.MethodView类: cla ...

  3. mysql小白系列_02 mysql源码安装标准化

    问题: 1.为什么数据目录和日志目录需要分开? 2.如何标准化配置多实例?(例如:一台物理主机上部署3306与3307两个实例) 3.详细描述MySQL编译安装的过程(截图安装步骤) 1.为什么数据目 ...

  4. binlog在并发状态下的记录

    前两天看binlog发现个奇怪的地方:对于position靠后的记录,timestamp却比之前的记录还要小.当时觉得大概和并发有关系 后来做了个实验 开两个session 对于session1: b ...

  5. POJ2377

    题目链接:http://poj.org/problem?id=2377 解题思路: Prim算法. Warning ! 注意考虑重边 ! 其实就是求最大生成树,没什么好说的,就上面那个坑. AC代码: ...

  6. 基于 abp vNext 和 .NET Core 开发博客项目 - 集成Hangfire实现定时任务处理

    上一篇文章(https://www.cnblogs.com/meowv/p/12956696.html)成功使用了Redis缓存数据,大大提高博客的响应性能. 接下来,将完成一个任务调度中心,关于定时 ...

  7. Maven快速入门(二)手动创建maven项目hellomaven

    之前讲过Maven介绍及环境搭建,介绍了maven的作用和如何搭建maven环境.接下来就以一个helloworld的例子来说一说如何创建maven项目以及maven项目的项目结构,最后讲maven如 ...

  8. 【数字图像处理】OpenCV中cv2.imread()与PIL中Image.open()的差别

    cv2.imread()与PIL中Image.open()两个函数都是用来读取图像,但是在使用过程存在一些差别. 1. 首先,从导入库方面看: # opencv-python import cv2 # ...

  9. HttpSession之表单的重复提交 & 验证码

    如果采用 HttpServletResponse.sendRedirct() 方法将客户端重定向到成功页面,将不会出现重复提交问题 1.表单的重复提交 1). 重复提交的情况: ①. 在表单提交到一个 ...

  10. 00016-layui 动态加载菜单 laytpl

    <%@ page contentType="text/html;charset=UTF-8" language="java" %> <%@ i ...