通过Spark作业将数据写入Hudi时,Spark应用的调优技巧也适用于此。如果要提高性能或可靠性,请牢记以下几点。

输入并行性:Hudi对输入进行分区默认并发度为1500,以确保每个Spark分区都在2GB的限制内(在Spark2.4.0版本之后去除了该限制),如果有更大的输入,则相应地进行调整。我们建议设置shuffle的并发度,配置项为hoodie.[insert|upsert|bulkinsert].shuffle.parallelism,以使其至少达到input_data_size/500MB。

Off-heap(堆外)内存:Hudi写入parquet文件,需要使用一定的堆外内存,如果遇到此类故障,请考虑设置类似spark.yarn.executor.memoryOverheadspark.yarn.driver.memoryOverhead的值。

Spark 内存:通常Hudi需要能够将单个文件读入内存以执行合并或压缩操作,因此执行程序的内存应足以容纳此文件。另外,Hudi会缓存输入数据以便能够智能地放置数据,因此预留一些spark.memory.storageFraction通常有助于提高性能。

调整文件大小:设置limitFileSize以平衡接收/写入延迟与文件数量,并平衡与文件数据相关的元数据开销。

时间序列/日志数据:对于单条记录较大的数据库/ nosql变更日志,可调整默认配置。另一类非常流行的数据是时间序列/事件/日志数据,它往往更加庞大,每个分区的记录更多。在这种情况下,请考虑通过.bloomFilterFPP()/bloomFilterNumEntries()来调整Bloom过滤器的精度,以加速目标索引查找时间,另外可考虑一个以事件时间为前缀的键,这将使用范围修剪并显着加快索引查找的速度。

GC调优:请确保遵循Spark调优指南中的垃圾收集调优技巧,以避免OutOfMemory错误。[必须]使用G1 / CMS收集器,其中添加到spark.executor.extraJavaOptions的示例如下:

-XX:NewSize=1g -XX:SurvivorRatio=2 -XX:+UseCompressedOops -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:CMSInitiatingOccupancyFraction=70 -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -XX:+PrintGCApplicationStoppedTime -XX:+PrintGCApplicationConcurrentTime -XX:+PrintTenuringDistribution -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp/hoodie-heapdump.hprof

OutOfMemory错误:如果出现OOM错误,则可尝试通过如下配置处理:spark.memory.fraction = 0.2,spark.memory.storageFraction = 0.2允许其溢出而不是OOM(速度变慢与间歇性崩溃相比)。

以下是完整的生产配置

spark.driver.extraClassPath /etc/hive/conf
spark.driver.extraJavaOptions -XX:+PrintTenuringDistribution -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCApplicationStoppedTime -XX:+PrintGCApplicationConcurrentTime -XX:+PrintGCTimeStamps -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp/hoodie-heapdump.hprof
spark.driver.maxResultSize 2g
spark.driver.memory 4g
spark.executor.cores 1
spark.executor.extraJavaOptions -XX:+PrintFlagsFinal -XX:+PrintReferenceGC -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintAdaptiveSizePolicy -XX:+UnlockDiagnosticVMOptions -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp/hoodie-heapdump.hprof
spark.executor.id driver
spark.executor.instances 300
spark.executor.memory 6g
spark.rdd.compress true spark.kryoserializer.buffer.max 512m
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.shuffle.service.enabled true
spark.sql.hive.convertMetastoreParquet false
spark.submit.deployMode cluster
spark.task.cpus 1
spark.task.maxFailures 4 spark.yarn.driver.memoryOverhead 1024
spark.yarn.executor.memoryOverhead 3072
spark.yarn.max.executor.failures 100

调优 | Apache Hudi应用调优指南的更多相关文章

  1. 使用Apache Hudi构建大规模、事务性数据湖

    一个近期由Hudi PMC & Uber Senior Engineering Manager Nishith Agarwal分享的Talk 关于Nishith Agarwal更详细的介绍,主 ...

  2. linux+jre+apache+mysql+tomcat调优

    一.不再为Apache进程淤积.耗尽内存而困扰 0. /etc/my.cnf,在mysqld那一段加上如下一行: log-slow-queries=queries-slow.log 重启MySQL 酌 ...

  3. 【译】调优Apache Kafka集群

    今天带来一篇译文“调优Apache Kafka集群”,里面有一些观点并无太多新颖之处,但总结得还算详细.该文从四个不同的目标出发给出了各自不同的参数配置,值得大家一读~ 原文地址请参考:https:/ ...

  4. OCM_第十四天课程:Section6 —》数据库性能调优_各类索引 /调优工具使用/SQL 优化建议

    注:本文为原著(其内容来自 腾科教育培训课堂).阅读本文注意事项如下: 1:所有文章的转载请标注本文出处. 2:本文非本人不得用于商业用途.违者将承当相应法律责任. 3:该系列文章目录列表: 一:&l ...

  5. LAMP 系统性能调优之网络文件系统调优

    LAMP 系统性能调优之网络文件系统调优 2011-03-21 09:35 Sean A. Walberg 网络转载 字号:T | T 使用LAMP系统的用户,都想把自己LAMP性能提高运行的速度提高 ...

  6. 重磅!Vertica集成Apache Hudi指南

    1. 摘要 本文演示了使用外部表集成 Vertica 和 Apache Hudi. 在演示中我们使用 Spark 上的 Apache Hudi 将数据摄取到 S3 中,并使用 Vertica 外部表访 ...

  7. 使用Apache Hudi + Amazon S3 + Amazon EMR + AWS DMS构建数据湖

    1. 引入 数据湖使组织能够在更短的时间内利用多个源的数据,而不同角色用户可以以不同的方式协作和分析数据,从而实现更好.更快的决策.Amazon Simple Storage Service(amaz ...

  8. Apache Hudi使用简介

    Apache Hudi使用简介 目录 Apache Hudi使用简介 数据实时处理和实时的数据 业务场景和技术选型 Apache hudi简介 使用Aapche Hudi整体思路 Hudi表数据结构 ...

  9. Apache Hudi C位!云计算一哥AWS EMR 2020年度回顾

    1. 概述 成千上万的客户在Amazon EMR上使用Apache Spark,Apache Hive,Apache HBase,Apache Flink,Apache Hudi和Presto运行大规 ...

随机推荐

  1. PHP EOF使用说明

    PHP EOF(heredoc) 使用说明 PHP EOF(heredoc)是一种在命令行shell(如sh.csh.ksh.bash.PowerShell和zsh)和程序语言(像Perl.PHP.P ...

  2. python之文件操作模块(os和shutil)

      1.os.name #操作系统类型 如果是posix,说明系统是liunx.Unix或Mac OS X,如果是nt,就是windows2.os.enviro #操作系统中定义的环境变量3.os.e ...

  3. 案例 (一)如何把python项目部署到linux服务器上

      一.背景 用Python写了个脚本,需要部署到Linux环境的服务器上,由于服务器linux系统(centos,redhat等)自带的是python2,现在的python萌新都是从python3开 ...

  4. 王艳 201771010127《面向对象程序设计(java)》第十一周学习总结

    一:理论部分. 1.数据结构:分为a.线性数据结构,如线性表.栈.队列.串.数组和文件. b.非线性数据结构,如树和图. 1)所有数据元素在同一个线性表中必须是相同的数据类型. 线性表按其存储结构可分 ...

  5. 201771010128王玉兰《面向对象程序设计(Java)》第十六周学习总结

    第一部分:理论基础 1.线程的概念 进程:进程是程序的一次动态执行,它对应了从代码加 载.执行至执行完毕的一个完整过程.  多线程:多线程是进程执行过程中产生的多条执行线索.  线程:线程是比进程执行 ...

  6. Windows系统下curl的下载和配置

    curl的下载和配置 简介:用URL规则在命令行下工作的文件传输工具. 下载:下载地址为 https://curl.haxx.se/download.html,在最底部找到Windows的版本,我下载 ...

  7. UVALive 3295

    题目大意:见刘汝佳<算法竞赛入门经典——训练指南>P173 解题思路: 每一个合法的三角形的三个顶点都不在同一直线上,那么问题其实就是在求所有不全在同一直线上的三点的组合数. 我们可以利用 ...

  8. java链接redis

    创建maven项目 2.导入jar包 <dependencies> <dependency> <groupId>redis.clients</groupId& ...

  9. vue 获取元素高度

    1.html <div ref="getheight"></div> <br><br> 2.JavaScript // 获取高度值 ...

  10. 特效 css3 渐变背景框

    .box{ 子级 position: relative; width: 300px; height: 400px; display: flex; justify-content: center; al ...