OpenCV-Python 直方图-1:查找、绘制和分析 | 二十六
目标
学会
- 使用OpenCV和Numpy函数查找直方图
- 使用OpenCV和Matplotlib函数绘制直方图
- 你将看到以下函数:cv.calcHist(),np.histogram()等。
理论
那么直方图是什么?您可以将直方图视为图形或绘图,从而可以总体了解图像的强度分布。它是在X轴上具有像素值(不总是从0到255的范围),在Y轴上具有图像中相应像素数的图。
这只是理解图像的另一种方式。通过查看图像的直方图,您可以直观地了解该图像的对比度,亮度,强度分布等。当今几乎所有图像处理工具都提供直方图功能。以下是剑桥彩色网站的图片,我建议您访问该网站以获取更多详细信息。

您可以看到图像及其直方图。(请记住,此直方图是针对灰度图像而非彩色图像绘制的)。直方图的左侧区域显示图像中较暗像素的数量,而右侧区域则显示明亮像素的数量。从直方图中,您可以看到暗区域多于亮区域,而中间调的数量(中间值的像素值,例如127附近)则非常少。
寻找直方图
现在我们有了一个关于直方图的想法,我们可以研究如何找到它。OpenCV和Numpy都为此内置了功能。在使用这些功能之前,我们需要了解一些与直方图有关的术语。
BINS:上面的直方图显示每个像素值的像素数,即从0到255。即,您需要256个值来显示上面的直方图。但是考虑一下,如果您不需要分别找到所有像素值的像素数,而是找到像素值间隔中的像素数怎么办?
例如,您需要找到介于0到15之间的像素数,然后找到16到31之间,…,240到255之间的像素数。只需要16个值即可表示直方图。这就是在OpenCV教程中有关直方图的示例中显示的内容。
因此,您要做的就是将整个直方图分成16个子部分,每个子部分的值就是其中所有像素数的总和。
每个子部分都称为“ BIN”。在第一种情况下,bin的数量为256个(每个像素一个),而在第二种情况下,bin的数量仅为16个。BINS由OpenCV文档中的histSize术语表示。
DIMS:这是我们为其收集数据的参数的数量。在这种情况下,我们仅收集关于强度值的一件事的数据。所以这里是1。
RANGE:这是您要测量的强度值的范围。通常,它是[0,256],即所有强度值。
1. OpenCV中的直方图计算
因此,现在我们使用cv.calcHist()函数查找直方图。让我们熟悉一下该函数及其参数:
cv.calcHist(images,channels,mask,histSize,ranges [,hist [,accumulate]])
- images:它是uint8或float32类型的源图像。它应该放在方括号中,即“ [img]”。
- channels:也以方括号给出。它是我们计算直方图的通道的索引。例如,如果输入为灰度图像,则其值为[0]。对于彩色图像,您可以传递[0],[1]或[2]分别计算蓝色,绿色或红色通道的直方图。
- mask:图像掩码。为了找到完整图像的直方图,将其指定为“无”。但是,如果要查找图像特定区域的直方图,则必须为此创建一个掩码图像并将其作为掩码。(我将在后面显示一个示例。)
- histSize:这表示我们的BIN计数。需要放在方括号中。对于全尺寸,我们通过[256]。
- ranges:这是我们的RANGE。通常为[0,256]。
因此,让我们从示例图像开始。只需以灰度模式加载图像并找到其完整直方图即可。
img = cv.imread('home.jpg',0)
hist = cv.calcHist([img],[0],None,[256],[0,256])
hist是256x1的数组,每个值对应于该图像中具有相应像素值的像素数。
2. numpy的直方图计算
Numpy还为您提供了一个函数np.histogram()。因此,除了calcHist()函数外,您可以尝试下面的代码:
hist,bins = np.histogram(img.ravel(),256,[0,256])
hist与我们之前计算的相同。但是bin将具有257个元素,因为Numpy计算出bin的范围为0-0.99、1-1.99、2-2.99等。因此最终范围为255-255.99。为了表示这一点,他们还在最后添加了256。但是我们不需要256。最多255就足够了。
- 另外
Numpy还有另一个函数np.bincount(),它比np.histogram()快10倍左右。因此,对于一维直方图,您可以更好地尝试一下。不要忘记在np.bincount中设置minlength = 256。例如,hist = np.bincount(img.ravel(),minlength = 256)
注意
OpenCV函数比np.histogram()快大约40倍。因此,尽可能使用OpenCV函数。
现在我们应该绘制直方图,但是怎么绘制?
绘制直方图
有两种方法,
- 简短的方法:使用Matplotlib绘图功能
- 稍长的方法:使用OpenCV绘图功能
1. 使用Matplotlib
Matplotlib带有直方图绘图功能:matplotlib.pyplot.hist()
它直接找到直方图并将其绘制。您无需使用calcHist()或np.histogram()函数来查找直方图。请参见下面的代码:
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('home.jpg',0)
plt.hist(img.ravel(),256,[0,256]); plt.show()
你将得到如下的结果:

或者,您可以使用matplotlib的法线图,这对于BGR图是很好的。为此,您需要首先找到直方图数据。试试下面的代码:
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('home.jpg')
color = ('b','g','r')
for i,col in enumerate(color):
histr = cv.calcHist([img],[i],None,[256],[0,256])
plt.plot(histr,color = col)
plt.xlim([0,256])
plt.show()
结果:

您可以从上图中得出,蓝色在图像中具有一些高值域(显然这应该是由于天空)
2. 使用 OpenCV
好吧,在这里您可以调整直方图的值及其bin值,使其看起来像x,y坐标,以便您可以使用cv.line()或cv.polyline()函数绘制它以生成与上述相同的图像。OpenCV-Python2官方示例已经提供了此功能。检查示例/python/hist.py中的代码。
掩码的应用
我们使用了cv.calcHist()来查找整个图像的直方图。如果你想找到图像某些区域的直方图呢?只需创建一个掩码图像,在你要找到直方图为白色,否则黑色。然后把这个作为掩码传递。
img = cv.imread('home.jpg',0)
# create a mask
mask = np.zeros(img.shape[:2], np.uint8)
mask[100:300, 100:400] = 255
masked_img = cv.bitwise_and(img,img,mask = mask)
# 计算掩码区域和非掩码区域的直方图
# 检查作为掩码的第三个参数
hist_full = cv.calcHist([img],[0],None,[256],[0,256])
hist_mask = cv.calcHist([img],[0],mask,[256],[0,256])
plt.subplot(221), plt.imshow(img, 'gray')
plt.subplot(222), plt.imshow(mask,'gray')
plt.subplot(223), plt.imshow(masked_img, 'gray')
plt.subplot(224), plt.plot(hist_full), plt.plot(hist_mask)
plt.xlim([0,256])
plt.show()
查看结果。在直方图中,蓝线表示完整图像的直方图,绿线表示掩码区域的直方图。

附加资源
- Cambridge in Color website:http://www.cambridgeincolour.com/tutorials/histograms1.htm
欢迎关注磐创博客资源汇总站:
http://docs.panchuang.net/
欢迎关注PyTorch官方中文教程站:
http://pytorch.panchuang.net/
OpenCV中文官方文档:
http://woshicver.com/
OpenCV-Python 直方图-1:查找、绘制和分析 | 二十六的更多相关文章
- ❤️【Python从入门到精通】(二十六)用Python的PIL库(Pillow)处理图像真的得心应手❤️
您好,我是码农飞哥,感谢您阅读本文,欢迎一键三连哦. 本篇重点介绍Python处理图像的标准库PIL库,处理图像真的的很方便. 干货满满,建议收藏,需要用到时常看看. 小伙伴们如有问题及需要,欢迎踊跃 ...
- ABP源码分析二十六:核心框架中的一些其他功能
本文是ABP核心项目源码分析的最后一篇,介绍一些前面遗漏的功能 AbpSession AbpSession: 目前这个和CLR的Session没有什么直接的联系.当然可以自定义的去实现IAbpSess ...
- Python脚本控制的WebDriver 常用操作 <二十六> 上传文件
测试用例场景 上传文件的方法是找到上传文件的对象,通常是的对象.然后直接往这个对象send_keys,传入需要上传文件的正确路径.绝对路径和相对路径都可以,但是上传的文件必须存在,否则会报错. Pyt ...
- Vue.js 源码分析(二十六) 高级应用 作用域插槽 详解
普通的插槽里面的数据是在父组件里定义的,而作用域插槽里的数据是在子组件定义的. 有时候作用域插槽很有用,比如使用Element-ui表格自定义模板时就用到了作用域插槽,Element-ui定义了每个单 ...
- 二十六. Python基础(26)--类的内置特殊属性和方法
二十六. Python基础(26)--类的内置特殊属性和方法 ● 知识框架 ● 类的内置方法/魔法方法案例1: 单例设计模式 # 类的魔法方法 # 案例1: 单例设计模式 class Teacher: ...
- python3.4学习笔记(二十六) Python 输出json到文件,让json.dumps输出中文 实例代码
python3.4学习笔记(二十六) Python 输出json到文件,让json.dumps输出中文 实例代码 python的json.dumps方法默认会输出成这种格式"\u535a\u ...
- spark 源码分析之十六 -- Spark内存存储剖析
上篇spark 源码分析之十五 -- Spark内存管理剖析 讲解了Spark的内存管理机制,主要是MemoryManager的内容.跟Spark的内存管理机制最密切相关的就是内存存储,本篇文章主要介 ...
- python接口自动化(二十六)--批量执行用例 discover(详解)
简介 我们在写用例的时候,单个脚本的用例好执行,那么多个脚本的时候,如何批量执行呢?这时候就需要用到 unittest 里面的 discover 方法来加载用例了.加载用例后,用 unittest 里 ...
- Python学习之旅(二十六)
Python基础知识(25):常用内建模块 1.datetime:处理日期和时间 (1)获取当前日期和时间 from datetime import datetime now = datetime.n ...
随机推荐
- 阿里云https免费证书配置-包教会
阿里云https免费证书配置-包教会-有需要请联系小编! 小编个人站点:https://www.itdog.site/ 小编微信号:wvqusrtg
- [红日安全]Web安全Day3 - CSRF实战攻防
本文由红日安全成员: Once 编写,如有不当,还望斧正. 大家好,我们是红日安全-Web安全攻防小组.此项目是关于Web安全的系列文章分享,还包含一个HTB靶场供大家练习,我们给这个项目起了一个名字 ...
- HTTP&ServletContext&Response对象_文件上传
今日内容 1. HTTP协议:响应消息 2. Response对象 3. ServletContext对象 HTTP协议 1. 请求消息:客户端发送给服务器端的数据 * 数据格式: 1. 请求行 2. ...
- 如何优化自己的JS代码
尽管接触大大小小项目N多个,但是刚入行两年, 撸码还是没有完全成一定的规律:最近受到很多启发,打算沉淀沉淀自己的代码: 之前很多页面的很多js脚本本分代码,更注重效果,事件久后没有发展 性能也是很关键 ...
- 曹工说Spring Boot源码(22)-- 你说我Spring Aop依赖AspectJ,我依赖它什么了
写在前面的话 相关背景及资源: 曹工说Spring Boot源码(1)-- Bean Definition到底是什么,附spring思维导图分享 曹工说Spring Boot源码(2)-- Bean ...
- 量化投资学习笔记37——《Python机器学习应用》课程笔记10
用KNN算法来进行数字识别,还是用sklearn自带的digits数据集. coding:utf-8 KNN算法实现手写识别 from sklearn import neighbors from sk ...
- Swift --闭包表达式与闭包(汇编分析)
在Swift中,可以通过func定义一个函数,也可以通过闭包表达式定义一个函数! 一.闭包表达式 概念 闭包表达式与定义函数的语法相对比,有区别如下: 去除了func 去除函数名 返回值类型添加了关键 ...
- 前端每日实战:39# 视频演示如何用纯 CSS 创作一个表达怀念童年心情的条纹彩虹心特效
效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/QxbmxJ 可交互视频教程 此视频 ...
- jinja2的url_for 和数据块
1.静态文件引入:{{ url_for('static', filename='文件路径') }} 2.定义路由:{{ url_for('模块名.视图名',变量=参数) }} 3.定义数据块: ...
- vue中犯下的小错误(一)
在开发采筑平台SRM的移动项目中:一个页面,感觉没啥错误,但是页面报错如下: 页面中的data或者mothods都没有任何问题,但是这个报错很是让人纠结,后来发现,在使用子组件时候: 此tabShow ...