一、线性可分的支持向量机存在的问题

支持向量机一中,我们介绍了当数据集是线性可分的时候,我们可以使用线性可分的支持向量机将数据进行分类(由于隔了很长时间才更新,因此忘记了支持向量机一的读者可以回看支持向量机一讲解)。但是,在现实生活中,还存在着很多数据是线性不可分的,或者说本来是线性可分的数据因为存在一些异常点,使得不能线性划分。

第一种情况如果数据是不能线性可分的话,线性可分的支持向量机是不适用。而第二种情况下,我们通过下图发现,如果在没有A点的情况,我们学到的超平面是黑线所示,但是由于A点的存在,模型会尽可能的拟合所有训练样本点,使得学习到的超平面就是红线所示。但我们可以很清楚的发现黑线是一个更好的超平面,能够将两类样本点分的更开,从而有更好的泛化能力。因此当有异常点的存在时会很大程度影响模型的泛化能力。

二、软间隔最大化的线性支持向量机问题定义

在线性可分的支持向量机中,是需要保证支持向量到超平面的函数间隔大于等于1的(如果忘记了可以回去查看支持向量机一讲解)。为了解决这类数据问题,使得支持向量机有更强的泛化能力,引入了软间隔最大化的支持向量机。所谓的软间隔就是说为每个样本点引入了一个松弛变量ε,这样支持向量到超平面的函数间隔不需要严格保证大于等于1,可以有ε的弹性范围。即约束条件就变成:

当然这个弹性范围不是随便给的,如果样本需要这个弹性范围,那就必须支付一定的代价,因此目标函数会加上每个样本点的这个弹性范围的代价,使得目标函数变成:

其中,C为惩罚参数,C值越大说明模型更加关注这个弹性范围带来的代价,对误分类的样本点的惩罚就越大。

三、优化软间隔最大化的支持向量机

和线性可分的支持向量机的优化方式类似,我们还是将目标函数以及约束条件使用拉格朗日函数转化为无约束问题:

其中μ和α均为拉格朗日乘子,且α_i≥0,μ_i≥0。

那么我们现在要优化的目标函数是:

当满足KKT条件时,以上问题可以等价于求解其对偶问题。

因此我们可以先求对于w、b、ε的极小值,然后再求拉格朗日乘子α和μ。

L对于w、b、ε求偏导,得:

得到以上三个式子,我们就可以将目标函数L进行优化,消除w和b,得:

现在得到的优化目标函数为:

细心的读者可能发现这跟线性可分的支持向量机的式子只是约束条件有不一样,其他都时一样的。另外,因为目标函数中已经没有了μ参数,因此约束条件可以将后面三个约束条件进行合并,得到进一步的优化目标函数:

同样的,求解α还是使用SMO算法即可。假设现在已经求得了一个最优解α_*,那么我们就可以进一步得到w、b的最优解w_*和b_*,即:

其中,(x_s, y_s)是任一个支持向量对应的样本。每一个支持向量对应的样本就可以得到一个b_*,因此最优解b_*也可以是所有支持向量对应的b的平均值。

求得这些参数之后,我们就可以得到分离超平面:

最终的分类决策函数:

四、KKT条件

上一节中目标函数的优化是通过求解对偶问题求得的,为了保证对偶问题的解就是原问题的解,需要满足以下的KKT条件:

五、支持向量

因为支持向量是跟目标函数有关的样本点,因此,在软间隔最大化的支持向量机中,支持向量要比线性可分的支持向量机的情况复杂一些,支持向量或者在间隔边界上,或者在边界内,或者被误分到超平面的另一边。

如果α = 0, 那么样本点在间隔边界上或者被正确分类,因此在间隔边界上的点是支持向量;如果0<α<C,那么样本点是在间隔边界,因为为了保证ε_i=0,y_i*(w’*x_i+b)-1=0,即样本点就在间隔边界,因此这些点都是支持向量;如果α=C,则μ=0,此时ε_i≠0.因为当ε_i≠0会带来一定惩罚代价,因此会尽量保证其等于0,如前面两种情况。但是现在已经没法保证了,因为要保证u*ε=0,u等于0说明ε没法保证。而当ε_i≠0说明这可能是一个异常点了,并且其也是支持向量。当0≤ε_i<1,那么点还是被正确分类,只是落在了超平面和间隔边界之间,如下图样本点2和4;当ε_i=1,那么点在超平面上,无法正确分类;当ε_i>1,那么点被误分类,如下图样本点1和3:

软间隔的支持向量

六、合页损失函数(hinge loss)

线性支持向量机的损失函数还有另一种解释,也是大家通常说支持向量机的损失函数时会提及的,原因可能是它有个专业学名,而上面说的软间隔最大化,不是一个学名。Hinge loss的形式如下:

其中有:

其实hingeloss和软间隔最大化中提及的是等价的。

当令:

hingeloss就可以写成:

若取λ = 1/ 2C,则:

可以发现这个形式跟软间隔最大化中的损失函数是等价的。

hingeloss的图形如下图:

合页损失函数

至此我们就已经将软间隔最大化的支持向量机讲解完毕。如果还记得在一开始的时候说到的第一种情况线性支持向量机是不适用于非线性可分的话,你就会发现刚才长篇大论说都是当有异常点存在的时候如何得到一个泛化能力更强的线性支持向量机。那么下一篇文章将会讲解支持向量机如何解决非线性数据分类问题,这才是支持向量机强大之处,完美适用于不同类型的数据。敬请关注!

欢迎关注磐创博客资源汇总站:

http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:

http://pytorch.panchuang.net/

SVM | 支持向量机原理讲解(二)的更多相关文章

  1. pureMVC简单示例及其原理讲解二(Model层)

    本节将讲述Model层. Model层有VO和Mediator组成,非常简单,仅仅包含两个类:UserVO和UserProxy. UserVO中的构造器用于初始化用户的添加(通过email和密码),另 ...

  2. 4. 支持向量机(SVM)原理

    1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...

  3. 转:SVM与SVR支持向量机原理学习与思考(一)

    SVM与SVR支持向量机原理学习与思考(一) 转:http://tonysh-thu.blogspot.com/2009/07/svmsvr.html 弱弱的看了看老掉牙的支持向量机(Support ...

  4. 支持向量机原理(四)SMO算法原理

    支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五) ...

  5. 机器学习实战 - 读书笔记(06) – SVM支持向量机

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第6章:SVM 支持向量机. 支持向量机不是很好被理解,主要是因为里面涉及到了许多数学知 ...

  6. SVM数学原理推导&鸢尾花实例

    //看了多少遍SVM的数学原理讲解,就是不懂,对偶形式推导也是不懂,看来我真的是不太适合学数学啊,这是面试前最后一次认真的看,并且使用了sklearn包中的SVM来进行实现了一个鸢尾花分类的实例,进行 ...

  7. SVM支持向量机(2)

    零.各种概念 1.硬间隔最大化   2.硬间隔支持向量机 3.线性支持向量机 软间隔最大化 软间隔支持向量机 4.非线性支持向量机 核函数kernel function 一.理解支持向量机SVM的原理 ...

  8. 【机器学习算法-python实现】svm支持向量机(1)—理论知识介绍

    (转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景      强烈推荐阅读(http://www.cnblogs.com/jerrylead/archiv ...

  9. php 变量原理讲解

    php 变量原理讲解 一.变量概念   所谓变量,是指在程序中其值可以变化的量. 程序是管理和处理数据的.在程序运行过程中,我们需要存贮这些数据,变量和常量就是用于保存程序运行时的数据的. 变量通常由 ...

随机推荐

  1. pem文件转换pub

    security CRT在key登陆的时候只能使用.pub文件,所以需呀将.pem转换成.pub 生成公密钥 .pub 文件.ssh-keygen -e -f key.pem >> key ...

  2. a标签嵌套href默认行为与子元素click事件存在影响

    2018-08-07 Question about work 开发过程中遇到问题,简单写个demo 运行环境为Chrome 68 描述一下这个问题,当<a>标签内部存在嵌套时, 父元素&l ...

  3. Flex实现九宫格

    写一个靠谱的flex布局 <!DOCTYPE html> <html> <style> .block { padding-top: 30%; margin-top: ...

  4. objectarx 填充的分割

    主要思路:找到填充边界集合:vecBo,然后把面积最大的边界找出来:bo1,用分割曲线和bo1通过boundary命令构成两个新的最大封闭边界,左边的记为 boLeft(红色部分),右边的记为boRi ...

  5. 数据挖掘入门系列教程(二)之分类问题OneR算法

    数据挖掘入门系列教程(二)之分类问题OneR算法 数据挖掘入门系列博客:https://www.cnblogs.com/xiaohuiduan/category/1661541.html 项目地址:G ...

  6. 『配置』服务器搭建 Office Online Server2016 实现文档预览 番外 错误篇

    安装一个或多个角色.角色服务或功能失败.找不到源文件.请再次尝试在新的“添加角色和功能”向导会话中安装角色.角色服务或功能,然后在向导的“确认”页中单击“指定备用源路径”以指定安装所需的源文件的有效位 ...

  7. elasticsearch 创建索引

    一.基本概念 索引:含有相同属性的文档的集合. //可以想象成一个数据库 database 类型:索引可以定义一个或多个类型,文档必须属于一个类型. //可以想象成数据库中的表 table 文档:文档 ...

  8. .Net Core项目中整合Serilog

    前言:Serilog是.NET应用程序的诊断日志记录库.它易于设置,具有简洁的API,并且可以在所有最新的.NET平台上运行.尽管即使在最简单的应用程序中它也很有用,但当对复杂的,分布式的和异步的应用 ...

  9. call 和 apply 和 bind的区别

    有些东西说忘就往,每天记录自己忘记的东西重新学习一遍,挺好 作用:call()和apply()用法都是一样的,改变this的指向问题 区别:接收参数的方式不同, (bind 方法是附加在函数调用后面使 ...

  10. 「从零单排HBase 05」核心特性region split

    HBase拥有出色的扩展性,其中最依赖的就是region的自动split机制. 1.split触发时机与策略 前面我们已经知道了,数据写入过程中,需要先写memstore,然后memstore满了以后 ...