CF1324F Maximum White Subtree 题解
简要题意:
给定一棵树,每个点有黑白两种颜色;对每个节点,求出包含当前节点的连通图,使得白点数与黑点数差最小。输出这些值。
F题也这么简单,咳咳,要是我也熬夜打上那么一场。。。可惜没时间打啊
美国佬怎么想的,不能让比赛设置成美国的上午,那我们就是下午了;非要设置成下午,那我们就是半夜。。。
首先,这题一看就是 \(\texttt{dp}\),树形 \(\texttt{dp}\),换根 \(\texttt{dp}\).
下文中,用 \(\texttt{Subtree(i)}\) 表示 \(i\) 的子树包含的所有节点集合。
用 \(\texttt{father(i)}\) 表示 \(i\) 节点的父亲。
用 \(\texttt{colour_i}\) 表示 \(i\) 节点的颜色值,黑为 \(-1\),白为 \(1\).
首先,假定 \(1\) 为根。
用 \(f_i\) 表示,当前联通图包含在以 \(i\) 为根的子树内的答案。
则必然存在:
\]
因为, \(colour_i\) 是必须包含的,其次是所有子树中的答案统计;负数不统计。
下面考虑一个换根(树形) \(\texttt{dp}\).用 \(g_i\) 表示 整棵树去掉以 \(i\) 为根的子树后(保留 \(i\) 节点)的答案。
\]
这也是显然的。
你发现这玩意儿似乎是 \(O(n^2)\) 的???
可以,你机智地发现,后面和 \(f_i\) 的状态转移方程长得不是一点点像!
接着,我们来看后面的部分。
\]
把这个代入 \(g\) 可知:
\]
然后考虑统计答案。
你可能觉得是这样子的:
\]
可是你机智的发现,连样例都过不了!!!
什么鬼?
\(f_i\) 和 \(g_i\) 都没毛病?
\(ans_i\) 似乎 也没什么问题?
你再次环顾了以下 \(f\) 和 \(g\) 的方程。
你机智的发现,两个函数都计算了 \(colour_i\).
所以还要减掉一个!
\]
天哪,你告诉我这个树形 dp 不会写???
要是 \(1\) 年前的我,这里肯定是记忆化搜索。
但是,我们就用树形 \(\texttt{dp}\) 写,怎么地!
具体见代码。
时间复杂度:\(O(n)\).
空间复杂度:\(O(n)\).
实际得分:\(100pts\).
#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
const int N=2e5+1;
inline int read(){char ch=getchar();int f=1;while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
int x=0;while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x*f;}
int n,a[N],fa[N],f[N];
int g[N],ans[N];
vector<int>G[N];
//正常套路,化树为图,随意求根,形成父亲
inline void solve(int dep,int bs) { //bs 是 dep 的父亲,既方便处理父亲,也为后面的 g 做铺垫
fa[dep]=bs; f[dep]=a[dep]?1:-1;
for(int i=0;i<G[dep].size();i++)
if(G[dep][i]!=bs) {
solve(G[dep][i],dep);
if(f[G[dep][i]]>0) f[dep]+=f[G[dep][i]];
} //加上每个儿子维护的子树值即可,巧妙维护
}
inline void dfs(int dep) {
int x=fa[dep],t=g[x]+f[x]-(a[x]?1:-1);
if(f[dep]>0) t-=f[dep];
if(t<0) t=0; ans[dep]=f[dep]+t;
g[dep]=t+(a[dep]?1:-1);
for(int i=0;i<G[dep].size();i++)
if(G[dep][i]-fa[dep]) dfs(G[dep][i]);
} //维护 g
int main(){
n=read();
for(int i=1;i<=n;i++) a[i]=read();
for(int i=1;i<n;i++) {
int x=read(),y=read();
G[x].push_back(y);
G[y].push_back(x);
}
solve(1,0); g[1]=a[1]?1:-1; ans[1]=f[1];
for(int i=0;i<G[1].size();i++) dfs(G[1][i]);
for(int i=1;i<=n;i++) printf("%d ",ans[i]);
return 0;
}
CF1324F Maximum White Subtree 题解的更多相关文章
- CF1324F Maximum White Subtree——换根dp
换根dp,一般用来解决在无根树上,需要以每个节点为根跑一边dfs的dp问题 我们做两遍dfs 先钦定任意一个点为根 第一遍,算出\(f_i\)表示\(i\)的子树产生的答案,这里,子树指的是以我们钦定 ...
- CF1324 --- Maximum White Subtree
CF1324 --- Maximum White Subtree 题干 You are given a tree consisting of \(n\) vertices. A tree is a c ...
- Codeforces 1324F Maximum White Subtree DFS
题意 给你无根一颗树,每个节点是黑色或白色.对于每一个节点,问包含该节点的权值最大的子树. 子树的权值等于子树中白点的个数减去黑点的个数. 注意,这里的子树指的是树的联通子图. 解题思路 这场就这题卡 ...
- Codeforces Round #627 (Div. 3) F - Maximum White Subtree(深度优先搜索)
题意: n 个点 n - 1 条边的树,问每个点所在所有子树中白黑点数目的最大差. 思路: 白点先由下至上汇集,后由上至下分并. #include <bits/stdc++.h> usin ...
- [Leetcode] 1120. Maximum Average Subtree
Given the root of a binary tree, find the maximum average value of any subtree of that tree. (A subt ...
- 【LeetCode】1120. Maximum Average Subtree 解题报告 (C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 DFS 日期 题目地址:https://leetcod ...
- Lintcode400 Maximum Gap solution 题解
[题目描述] Given an unsorted array, find the maximum difference between the successive elements in its s ...
- Codeforces Round #665 (Div. 2) D. Maximum Distributed Tree 题解(贪心+易错)
题目链接 题目大意 给你一课树,要你给每一条边分权值,每条边的权值大于0,他们的乘积等于k,而且要使得n-1条边1的数量尽可能少,定义 f(u,v)为u到v的边权和求 \(\max \sum_{i=1 ...
- CF1092 --- Tree with Maximum Cost
CF1324 --- Maximum White Subtree 题干 You are given a tree consisting exactly of \(n\) vertices. Tree ...
随机推荐
- 从摔得稀碎、蓝屏再到黄牛拒绝加价:iPhone X究竟是怎么了
X究竟是怎么了" title="从摔得稀碎.蓝屏再到黄牛拒绝加价:iPhone X究竟是怎么了"> 近日,iPhone X终于迎来了正式出货的时间.作为十周年的创 ...
- 【转载】Oracle Spatial中SDO_Geometry详细说明
转载只供个人学习参考,查看请前往原出处:http://www.cnblogs.com/upDOoGIS/archive/2009/05/20/1469871.html 相关微博:oracle 创建SD ...
- docker学习读书笔记-一期-整理
0.Docker - 第零章:前言 1.Docker - 第一章:Docker简介 2.Docker - 第二章:第一个Docker应用 3.Docker - 第三章:Docker常用命令 4.Doc ...
- 何用Java8 Stream API进行数据抽取与收集
上一篇中我们通过一个实例看到了Java8 Stream API 相较于传统的的Java 集合操作的简洁与优势,本篇我们依然借助于一个实际的例子来看看Java8 Stream API 如何抽取及收集数据 ...
- PHP时区转换(默认中国时区<Asia/Shanghai>转意大利时区<Europe/Rome>)
<?php function changeTimeZone($date_time, $format = 'Y-m-d H:i:s', $to = 'Europe/Rome', $from = ' ...
- 转pdf
一.转印厂pdf(书本类及折页类) 1.储存为(Ctrl+Shift+S) 2.保存类型选择 pdf 3.常规==>Adobe PDF预设==>选择印刷质量 4.选择标记和出血==&g ...
- webpack知识锦集(一)
ebpack是一个javascript应用吃那个程序的静态模块打包器(module bundler).处理时候会递归构建一个依赖关系图,包含每个模块,将模块打包成一个或者多个bundle. 核心概念: ...
- 基于springcloud搭建项目-Feign篇(四)
上一篇已经写过ribbon客户端负载均衡的用法了,这篇主要是介绍feign的用法,首先我们必须了解feign是什么?能干嘛?怎么用? 这里简单介绍一下,然后进行代码测试 1.概述 Feign是一个声明 ...
- HDFS DataNode详解
1. datanode介绍 1.1 datanode datanode是负责当前节点上的数据的管理,具体目录内容是在初始阶段自动创建的,保存的文件夹位置由配置选项{dfs.data.dir}决定 1. ...
- Java集合01——List 的几个实现类,了解一下?
从本文起,我们将开始分享 Java 集合方面的知识,关注公众号「Java面典」了解更多 Java 知识点. List 是继承于 Collection 的接口,其实现类有 ArrayList,Linke ...