动态规划/MinMax-Predict the Winner
2018-04-22 19:19:47
问题描述:
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.
Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.
Example 1:
Input: [1, 5, 2]
Output: False
Explanation: Initially, player 1 can choose between 1 and 2.
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
Hence, player 1 will never be the winner and you need to return False.
Example 2:
Input: [1, 5, 233, 7]
Output: True
Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.
问题求解:
首先我们如果穷举的话,是会出现重叠子问题的,比如A选left,B选left,A选right,B选right等同于A选right,B选right,A选left,B选left。因此适用于动态规划的方法来解决。现在问题就是如何建立这样的一个递推关系式。这条题目的动态规划建立是比较trick的,因此这里做一个介绍。
dp[i][j]:保存的是先手玩家A在i-j之间能获得的做高分数与后手玩家B的最高分数的差值。
初始条件:i == j时,dp[i][j] = nums[i],这也对应着长度为一的情况。
递推关系式:dp[i][j] = Math.max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1]),也就是说,对于当前的先手玩家,他既可以选择前面一个数,也可以选择后面一个数,那么后手玩家的范围就因此减少了,由于存储的是差值,因此可以得到上述的递推式。
public boolean PredictTheWinner(int[] nums) {
int n = nums.length;
int[][] dp = new int[n][n];
for (int i = 0; i < n; i++) dp[i][i] = nums[i];
for (int len = 2; len <= n; len++) {
for (int i = 0; i <= n - len; i++) {
int j = i + len - 1;
dp[i][j] = Math.max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1]);
}
}
return dp[0][n - 1] >= 0;
}
动态规划/MinMax-Predict the Winner的更多相关文章
- Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner)
Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner) 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端 ...
- LN : leetcode 486 Predict the Winner
lc 486 Predict the Winner 486 Predict the Winner Given an array of scores that are non-negative inte ...
- LC 486. Predict the Winner
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
- 【LeetCode】486. Predict the Winner 解题报告(Python)
[LeetCode]486. Predict the Winner 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: ht ...
- 动态规划-Predict the Winner
2018-04-22 19:19:47 问题描述: Given an array of scores that are non-negative integers. Player 1 picks on ...
- [LeetCode] Predict the Winner 预测赢家
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
- [Swift]LeetCode486. 预测赢家 | Predict the Winner
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
- Predict the Winner LT486
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
- Minimax-486. Predict the Winner
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
- 486. Predict the Winner
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
随机推荐
- linux增加history时间戳
增加环境变量到/etc/profile export HISTTIMEFORMAT="%Y-%m-%d %H:%M:%S " export HISTSIZE=9999
- 苹果会放弃iPhone吗?
苹果会放弃iPhone吗?一般来讲,这是一个相当白痴的问题,苹果放弃iPhone的概率比唐僧放弃取经的概率要低20倍.前段时间回老家,正在学习英语的小侄子问我:"叔叔,苹果用英语怎么说呀? ...
- Hadoop2.7搭建
Hadoop最底部是 Hadoop Distributed File System(HDFS),它存储Hadoop集群中所有存储节点上的文件.HDFS(对于本文)的上一层是MapReduce 引擎,该 ...
- Microsoft Translator:打破语言障碍 拓展全球沟通新机遇
Translator:打破语言障碍 拓展全球沟通新机遇"> 作者:Olivier Fontana, 微软研究院Microsoft Translator产品战略总监 世界越来越小,全球协 ...
- 一条SQL在内存结构与后台进程工作机制
oracle服务器由数据库以及实例组成,数据库由数据文件,控制文件等物理文件组成,实例是由内存结构+后台进程组成,实例又可以看做连接数据库的方式,在我看来就好比一家公司,实例就是一个决策的办公室,大大 ...
- C++走向远洋——40(第九周,深复制体验)
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...
- rsync 增量同步总是多两行数据
从google云机器rsync日志到本地,并通过logstash格式化后存入elasticsearch,但在实施过程中发现,每次rsync后通过查看elasticsearch,都会将上次已同步的数据再 ...
- IDEA打包web项目为war,通过本地Tomcat启动war
1.打包 ①idea的打包很简单,网上教程也很多,简单说下:project struct-->artifact-->+-->Web Application:Archive--> ...
- .Net Core中使用ExceptionFilter
.Net Core中有各种Filter,分别是AuthorizationFilter.ResourceFilter.ExceptionFilter.ActionFilter.ResultFilter. ...
- Python基本小程序
目录 Python基本小程序 一.筛选从1-100所有的奇数 二.筛选从0-100所有的偶数 三.求1-100之间所有的偶数和,奇数和 四.三个数由小到大输出 五.四个数字重复数字的三位数 Pytho ...