单调队列+二分 G - Queue 小阳买水果
这个题目会做的很偶然,突然想到的,因为我们要求离这只海象的最远的比他年轻的海象,这个年轻的海象可以用单调栈维护。
就是从前往后遍历一遍,单调栈里面存年龄从小往大的海象,这个为什么这么存呢,因为如果后面有比这个队列里面更年轻的海象,
那么就可以更新,而且这个更新是正确的,不会有影响,这个可以自己想一想/
然后就可以得到一个单调栈的数组,这个时候因为单调栈是单调的,所以可以用二分来查找我们所需要的值。
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <vector>
#include <algorithm>
#include <map>
#include <iostream>
#define inf 0x3f3f3f3f
#define inf64 0x3f3f3f3f3f3f3f3f
using namespace std;
const int maxn = 1e5 + ;
typedef long long ll;
int queue_min[maxn];
int f1 = , t1 = , r = ;
int ans[maxn];
ll num[maxn];
ll a[maxn]; int ok(ll s)
{
int x = , y = t1;
int mid = (x + y) / ;
while(x<=y)
{
mid = (x + y) / ;
if (a[queue_min[mid]] >= s) y = mid-;
else x = mid + ;
//printf("x=%d y=%d mid=%d\n",x,y, mid);
}
//printf("mid=%d queue_min=%d\n", mid, queue_min[mid]);
if (a[queue_min[mid]] >= s) return queue_min[mid - ];
return queue_min[mid];
} int main()
{
int n;
scanf("%d", &n);
f1 = , t1 = , r = ;
for (int i = ; i <= n; i++) scanf("%lld", &a[i]);
queue_min[] = ;
while(r<n)
{
r++;
while (f1 <= t1 && a[r] < a[queue_min[t1]]) t1--;
queue_min[++t1] = r;
}
for (int i = f1; i <= t1; i++) {
num[i] = a[queue_min[i]];
// printf("queue_min[%d]=%d\n", i, queue_min[i]);
// printf("num[%d]=%lld\n", i, num[i]);
}
for(int i=;i<=n;i++)
{
int f = ok(a[i]);
//printf("F=%d\n",f);
if (f < i) ans[i] = -;
else ans[i] = f - i - ;
printf("%d ", ans[i]);
}
printf("\n");
return ;
}
单调栈 海象
这个题目和上面那个其实是一样的,但是我居然没有发现,这个要先前缀和处理一下,然后你就发现其实求的就是 比如 i ,求的就是 i 后面的比 i 更大的sum的最远位置。
也是二分+单调队列
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <vector>
#include <algorithm>
#include <iostream>
#define inf 0x3f3f3f3f
#define inf64 0x3f3f3f3f3f3f3f3f
using namespace std;
const int maxn = 2e6 + ;
typedef long long ll;
int queue_max[maxn];
int a[maxn], num[maxn];
ll sum[maxn];
int f1, t1;
int r; int ok(ll s) {
int x = , y = t1;
int mid = (x + y) / ;
while (x <= y) {
mid = (x + y) / ;
if (sum[queue_max[mid]] > s) x = mid + ;
else y = mid - ;
//printf("x=%d y=%d mid=%d\n", x, y, mid);
}
//printf("mid=%d queue_min=%d\n", mid, queue_min[mid]);
if (sum[queue_max[mid]] <= s) return queue_max[mid - ];
return queue_max[mid];
} int main() {
int n;
scanf("%d", &n);
for (int i = ; i <= n; i++) {
scanf("%lld", &sum[i]);
sum[i] += sum[i - ];
// printf("sum[%d]=%lld\n", i, sum[i]);
}
f1 = , t1 = ;
r = ;
queue_max[] = ;
int ans = ;
while (r <= n) {
while (t1 >= f1 && sum[r] > sum[queue_max[t1]]) t1--;
queue_max[++t1] = r;
//printf("queue_max[%d]=%d\n", t1, queue_max[t1]);
r++;
}
for (int i = f1; i <= t1; i++) {
num[i] = sum[queue_max[i]];
//printf("queue[%d]=%d\n", i, queue_max[i]);
}
for (int i = ; i <= n; i++) {
int f = ok(sum[i]);
//printf("i=%d f=%d\n", i, f);
if (f > i)
{
if (sum[i] >= ) ans = max(ans, f - i + );
else ans = max(ans, f - i);
}
}
printf("%d\n", ans);
return ;
}
二分+单调队列
单调队列+二分 G - Queue 小阳买水果的更多相关文章
- 牛客小白月赛16 D 小阳买水果 (思维题)
链接:https://ac.nowcoder.com/acm/contest/949/D来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言52428 ...
- P2698 [USACO12MAR]花盆Flowerpot(单调队列+二分)
P2698 [USACO12MAR]花盆Flowerpot 一看标签........十分后悔 标签告诉你单调队列+二分了............ 每次二分花盆长度,蓝后开2个单调队列维护最大最小值 蓝 ...
- [BZOJ 2500]幸福的道路 树形dp+单调队列+二分答案
考试的时候打了个树链剖分,而且还审错题了,以为是每天找所有点的最长路,原来是每天起点的树上最长路径再搞事情.. 先用dfs处理出来每个节点以他为根的子树的最长链和次长链.(后面会用到) 然后用类似dp ...
- HDU - 5289:Assignment(单调队列||二分+RMQ||二分+线段树)
Tom owns a company and he is the boss. There are n staffs which are numbered from 1 to n in this com ...
- [USACO12MAR]花盆Flowerpot (单调队列,二分答案)
题目链接 Solution 转化一下,就是个单调队列. 可以发现就是一段区间 \([L,R]\) 使得其高度的极差不小于 \(d\) ,同时满足 \(R-L\) 最小. 然后可以考虑二分然后再 \(O ...
- bzoj 2216 [Poi2011]Lightning Conductor——单调队列+二分处理决策单调性
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2216 那个关于位置的代价是带根号的,所以随着距离的增加而增长变慢:所以靠后的位置一旦比靠前的 ...
- 【单调队列+二分查找】bzoj 1012: [JSOI2008]最大数maxnumber
[题意] 维护一个单调递减的q数组,用id数组记录q数组的每个下标对应在原数组的位置,那么id数组一定有单调性(q数组中越靠后,原数组中也靠后),然后二分查找这个数 [AC] #include< ...
- BZOJ 1012 单调队列+二分
思路: 维护一个单减的序列 序号是单增的 每回二分查找第一个比询问的大的值 我手懒 用得lower_bound //By SiriusRen #include <cstdio> #incl ...
- bzoj1855: [Scoi2010]股票交易 单调队列优化dp ||HDU 3401
这道题就是典型的单调队列优化dp了 很明显状态转移的方式有三种 1.前一天不买不卖: dp[i][j]=max(dp[i-1][j],dp[i][j]) 2.前i-W-1天买进一些股: dp[i][j ...
随机推荐
- [编译] 7、在Linux下搭建安卓APP的开发烧写环境(makefile版-gradle版)—— 在Linux上用命令行+VIM开发安卓APP
April 18, 2020 6:54 AM - BEAUTIFULZZZZ 目录 0 前言 1 gradle 安装配置 1.1 卸载系统默认装的gradle 1.2 下载对应版本的二进制文件 1.3 ...
- 加锁的位置 (eq:map<key,map<>> 双集合 怎么 只加锁 在用到的对象位置,而不是把整个集合锁住)
比如上边的map里套map 定义变量为data,例如组队副本 npc 为1 下有众多房间 即Map<1,<roomId,room>> ,处于多线程下,一个线程在 npc为1的下 ...
- 一个hql 关键字member(非mysql)引起的 vo 数据 保存数据库错误
2015-03-19 14:16:29,285 ERROR [Thread-3] (DAOHelper.java:312) - updateByEntityPK:com.agileeagle.dao. ...
- Word文档创建目录
一.以设置两级目录为例: 1.设置两个标题,标题1对应第一级目录,标题2对应第二级目录. 点击标题1,点击修改: 设置好样式和格式: 同理设置标题2. 2.创建多级目录: 选择级别1,关联到标题1,设 ...
- vue2.x学习笔记(二十二)
接着前面的内容:https://www.cnblogs.com/yanggb/p/12633051.html. 自定义指令 简介 除了核心功能默认内置的指令([v-mode]和[v-show]等),v ...
- 腾讯推出超强少样本目标检测算法,公开千类少样本检测训练集FSOD | CVPR 2020
论文提出了新的少样本目标检测算法,创新点包括Attention-RPN.多关系检测器以及对比训练策略,另外还构建了包含1000类的少样本检测数据集FSOD,在FSOD上训练得到的论文模型能够直接迁移到 ...
- Linux工程师必备的系统监控工具
WGCLOUD基于java语言开发,是微服务架构构建监控系统,支持高并发高性能高可用,核心模块包括:服务器集群监控,ES集群状态监控,CPU监控,内存监控,数据监控(mysql,postgresql, ...
- JDBC 工具类封装
每次使用jdbc 我们都要 加载驱动类 创建链接 创建Statement 接口对象执行sql 关闭资源 按照这样的套路可以封装一些重用代码方便在其他方法中调用 package com.xzlf.jdb ...
- Java 多线程 -- 协作模型:生产消费者实现方式一:管程法
多线程通过管程法实现生产消费者模式需要借助中间容器作为换从区,还包括生产者.消费者.下面以蒸馒头为列,写一个demo. 中间容器: 为了防止数据错乱,还需要给生产和消费方法加锁 并且生产者在容器写满的 ...
- 挑战全网最幽默的Vuex系列教程:第五讲 Vuex的小帮手
先说两句 前面已经讲完了 Vuex 下的 State.Getter.Mutation 及 Action 这四驾马车,不知道大家是否已经理解.当然,要想真正熟练掌握的话,还是需要不断的练习和动手实践才行 ...