CodeChef - TELEPORT
题目链接:https://vjudge.net/problem/CodeChef-TELEPORT
题目大意:
有\(Q\)个指令,指令为:\(+\) \(x\) \(y\)(在二维平面内添加一个点,坐标为\((x,y)\));或\(?\) \(i\) \(j\)(如果第\(i\)个指令所添加的点和第\(j\)个指令所添加的点联通,则打印 "DA",否则打印 “NET").
关于联通的定义:如果每个点能到达的区域为\({(a,b):|a-x|+|b-y| \le R}\).如果点\(u\)和点\(v\)联通,点\(v\)和点\(k\)联通,则点\(u\)和点\(k\)联通。
\(1 \le Q,R,x,y \le 100,000\)
知识点: 线段树、并查集
解题思路:
易知每个点能到达的区域为一个对角线长度为\(2R\)的正菱形,我们可以通过将其旋转\(45^\circ \)来将其转换成正方形,具体的转化方法为
\(x' = x + y\)
\(y' = x - y\)
而该正方形的连通区域也转变成了\({(a',b'):|a'-x'|+|b'-y'| \le R}\).
具体证明:(参考(chao)自官方题解)
\(|x-a|+|y-b| = max(x-a+y-b, x-a+b-y, a-x+y-b, a-x+b-y) = max(|(x+y)-(a+b)|, |(x-y)-(a-b)|) = max(|x'-a'|, |y'-b'|) \le R\)
(转化的部分才是本题的精髓所在)
转化为正方形之后,对于坐标轴的 \(x\) 轴建立线段树,用\(set\)记录\(x\)在该区间中的中心点所对应\(y\)值及其指令编号。
添加的时候先查询一下在
\([x-2R,x] \times [y-2R,y], [x-2R,x] \times [y,y+2R], [x,x+2R] \times [y-2R, y], [x,2R] \times [y,y+2R] \)
这\(4\)个正方形区域中有没有点,如果有,则将各个区域中最靠近的点和要添加的点用并查集合并在一起。
询问的时候只需询问两个点是否并在一起了即可。
具体实现看代码及注释
AC代码:
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1 const int maxn=,RR=;
typedef pair<int,int> P;
set<P> tree[maxn<<]; //(y值,第几次查询)
void update(int pos,int y,int q,int l,int r,int rt){//在pos点插入纵坐标为y,查询编号为q的点
tree[rt].insert(make_pair(y,q));
if(l==r) return;
int m=(l+r)>>;
if(pos<=m) update(pos,y,q,lson);
else update(pos,y,q,rson);
}
int query(int L,int R,int y,int aR,int l,int r,int rt){//查询[L,R]*[y,2*aR]的正方形区域
if(L<=l&&r<=R){
set<P>::iterator it=tree[rt].lower_bound(make_pair(y,)); //找出纵坐标大于或等于y的最小值
if(it != tree[rt].end() &&(it->first <= y+*aR)) return it->second; //返回对应的编号(从1开始)
return ;//否则返回0
}
int m=(l+r)>>;
int ret=;
if(L<=m) ret=max(ret,query(L,min(m,R),y,aR,lson));
if(R>m) ret=max(ret,query(max(L,m+),R,y,aR,rson));
return ret;
} //并查集部分
int par[maxn];
void init(int n){
for(int i=;i<=n;i++) par[i]=i;
}
int finds(int x){
if(par[x]==x) return x;
return par[x]=finds(par[x]);
}
void unite(int x,int y){
int tx=finds(x);
int ty=finds(y);
if(tx==ty) return;
par[tx]=ty;
}
//*******************************************************
int main(){
int Q,R,x,y;
char tmp[];
scanf("%d%d",&Q,&R);
init(Q);
for(int q=;q<=Q;q++){
scanf("%s %d %d",tmp,&x,&y);
int tx=x+y+*R,ty=x-y; //因为后面会查询到[tx-2*R,tx]这个区间,所以我们统一先将其加上2*R,避免出现负数,数组也要相应地开大一点
if(tmp[]=='+'){
int x1=query(tx-*R,tx,ty-*R,R,,maxn,);
int x2=query(tx-*R,tx,ty,R,,maxn,);
int x3=query(tx,tx+*R,ty-*R,R,,maxn,);
int x4=query(tx,tx+*R,ty,R,,maxn,);
if(x1) unite(x1,q);
if(x2) unite(x2,q);
if(x3) unite(x3,q);
if(x4) unite(x4,q);
update(tx,ty,q,,maxn,);
}
else{
if(finds(x)==finds(y)) printf("DA\n");
else printf("NET\n");
}
}
}
CodeChef - TELEPORT的更多相关文章
- 【BZOJ-3514】Codechef MARCH14 GERALD07加强版 LinkCutTree + 主席树
3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 1288 Solved: 490 ...
- 批量去除Teleport Pro整站下载文件冗余代码
teleport pro tppabs标签批量删除 teleport pro tppabs标签批量删除 使 用Teleport Pro下载的网页代码中包含了很多垃圾代码,比如下载的html网页代码中会 ...
- 【BZOJ4260】 Codechef REBXOR 可持久化Trie
看到异或就去想前缀和(⊙o⊙) 这个就是正反做一遍最大异或和更新答案 最大异或就是很经典的可持久化Trie,从高到低贪心 WA: val&(1<<(base-1))得到的并不直接是 ...
- Teleport Ultra/Teleport Pro的冗余代码批量清理方法
Teleport Pro 是款优秀的网站离线浏览工具(即网站整站下载工具),Teleport Ultra是其增强版,但使用此系列软件下载的离线网页里会包含大量冗余代码(如tppabs),手动去修改工作 ...
- codechef 两题
前面做了这场比赛,感觉题目不错,放上来. A题目:对于数组A[],求A[U]&A[V]的最大值,因为数据弱,很多人直接排序再俩俩比较就过了. 其实这道题类似百度之星资格赛第三题XOR SUM, ...
- Gravitational Teleport 是一个先进的 SSH 服务器,基于 Golang SSH 构建,完全兼容 OpenSSH
Gravitational Teleport 是一个先进的 SSH 服务器,可通过 SSH 或者 HTTPS 远程访问 Linux 服务器.其目的是为了替代 sshd.Teleport 可以轻松让团队 ...
- codechef January Challenge 2014 Sereja and Graph
题目链接:http://www.codechef.com/JAN14/problems/SEAGRP [题意] 给n个点,m条边的无向图,判断是否有一种删边方案使得每个点的度恰好为1. [分析] 从结 ...
- BZOJ3509: [CodeChef] COUNTARI
3509: [CodeChef] COUNTARI Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 339 Solved: 85[Submit][St ...
- CodeChef CBAL
题面: https://www.codechef.com/problems/CBAL 题解: 可以发现,我们关心的仅仅是每个字符出现次数的奇偶性,而且字符集大小仅有 26, 所以我们状态压缩,记 a[ ...
随机推荐
- Linux从入门到精通系列之NFS
网络文件系统(NFS,Network File System)是一种将远程主机上的分区(目录)经网络挂载到本地系统的一种机制,通过对网络文件系统的支持,用户可以在本地系统上像操作本地分区一样来对远程主 ...
- 有向图强连通分量SCC(全网最好理解)
定义: 在有向图中,如果一些顶点中任意两个顶点都能互相到达(间接或直接),那么这些顶点就构成了一个强连通分量,如果一个顶点没有出度,即它不能到达其他任何顶点,那么该顶点自己就是一个强连通分量. 做题的 ...
- 对MobileNet网络结构的解读
引言 近几年来,CNN在ImageNet竞赛的表现越来越好.为了追求分类准确度,模型越来越深,复杂度越来越高,如深度残差网络(ResNet)其层数已经多达152层.但是在真实场景中如移动或者嵌入式设备 ...
- Nginx模块开发(1)————类helloworld
Nginx看了一点了,准备写个helloworld试试,觉得只看书的话很多东西都乱乱的,晕晕的,印象不深. 我的helloworld模块的目的就是:能够在浏览器里输入http://你的ip地址/lcw ...
- B. Preparing for Merge Sort
\(考虑的时候,千万不能按照题目意思一组一组去模拟\) \(要发现每组的最后一个数一定大于下一组的最后一个数\) \(那我们可以把a中的数一个一个填充到vec中\) #include <bits ...
- 【Hadoop离线基础总结】Hue与Impala集成
Hue与Impala集成 1.修改hue.ini配置文件 [impala] server_host=node03 server_port=21050 impala_conf_dir=/etc/impa ...
- 一阶RC低通滤波器详解(仿真+matlab+C语言实现)
文章目录 1 预备知识 2 simulink 仿真 3 simulink 运行结果 4 matlab实现 5 matlab运行结果 6 C语言实现 7 C语言运行结果 如果本文帮到了你,帮忙点个赞: ...
- Altium Designer PCB封装bug,元件焊盘位置偏移解决方法
1.问题描述:在拖动几个电阻位置时,意外发现Altium designer20版本软件的一个bug——0805的电阻两焊盘位置发生了偏移,如下图所示. 2.解决办法: ①选中焊盘偏移的封装,右键剪切掉 ...
- ADC电路持续更新
http://www.mcuol.com/tech/109/30923.htm
- python学习第七天--文件系统常用模块os,os.path,pickle
模块是一个可用代码段的打包,后缀名为py,可被别的程序引入#使用import OS模块:operting system操作系统#import os os.chdir(path) 改变当前工作目录 os ...