1077: [SCOI2008]天平

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 416  Solved: 224
[Submit][Status][Discuss]

Description

  你有n个砝码,均为1克,2克或者3克。你并不清楚每个砝码的重量,但你知道其中一些砝码重量的大小关系。
你把其中两个砝码A和B放在天平的左边,需要另外选出两个砝码放在天平的右边。问:有多少种选法使得天平的左
边重(c1)、一样重(c2)、右边重(c3)?(只有结果保证惟一的选法才统计在内)

Input

  第一行包含三个正整数n,A,B(1<=A,B<=N,A和B不相等)。砝码编号为1~N。以下n行包含重量关系矩阵,
其中第i行第j个字符为加号“+”表示砝码i比砝码j重,减号“-”表示砝码i比砝码j轻,等号“=”表示砝码i和砝
码j一样重,问号“?”表示二者的关系未知。存在一种情况符合该矩阵

Output

  仅一行,包含三个整数,即c1,c2和c3。

Sample Input

6 2 5
?+????
-?+???
?-????
????+?
???-?+
????-?

Sample Output

1 4 1

HINT

【数据规模】 4<=n<=50

 
 
 
http://blog.csdn.net/wxh010910/article/details/56012133
 
 
#include<cstdio>
#include<cstring>
using namespace std;
const int N=52;
int fa[N],l[N],r[N],g[N][N],v[N];
int ans1,ans2,ans3;
int n,A,B;
int q[N],top;
char ch[N][N];
inline int findx(int x){return x==fa[x]?fa[x]:fa[x]=findx(fa[x]);}
inline void uni(int x,int y){fa[findx(x)]=findx(y);}
inline int sgn(int x){return !x?0:(x>0?1:-1);}
int main(){
   scanf("%d%d%d",&n,&A,&B);
   for(int i=1;i<=n;++i) fa[i]=i;
   for(int i=1;i<=n;++i){
    scanf("%s",ch[i]+1);
    for(int j=1;j<=n;++j) if(ch[i][j]=='=') uni(i,j);
   }
   for(int i=1;i<=n;++i)
    for(int j=1;j<=n;++j)
    if(ch[i][j]=='+') g[findx(i)][findx(j)]=1;
    else if(ch[i][j]=='-') g[findx(i)][findx(j)]=-1;
    for(int i=1;i<=n;++i) if(findx(i)==i) q[++top]=i;
    for(int i=1;i<=top;++i){
        bool L=0,R=0;
        for(int j=1;j<=top;++j) L|=(g[q[i]][q[j]]==1),R|=(g[q[i]][q[j]]==-1);
        if(!L||!R) continue;
        v[q[i]]=2;
        for(int j=1;j<=top;++j)
            if(g[q[i]][q[j]]==1) v[q[j]]=1;
        else if(g[q[i]][q[j]]==-1) v[q[j]]=3;
    }
    for(int i=1;i<=top;++i){
        l[q[i]]=1,r[q[i]]=3;
        if(v[q[i]]) l[q[i]]=r[q[i]]=v[q[i]];
        else for(int j=1;j<=top;++j)
            if(g[q[i]][q[j]]==1) l[q[i]]=2;
        else if(g[q[i]][q[j]]==-1) r[q[i]]=2;
    }
    for(int i=1;i<n;++i) if(i!=A&&i!=B)
    for(int j=i+1;j<=n;++j) if(j!=A&&j!=B)
    {
        int fi=findx(i),fj=findx(j),fa=findx(A),fb=findx(B);
        int t1=0,t2=0,t3=0;
        for(int vi=l[fi];vi<=r[fi];++vi) for(int vj=l[fj];vj<=r[fj];++vj)
        for(int va=l[fa];va<=r[fa];++va) for(int vb=l[fb];vb<=r[fb];++vb)
        {
            int F[4]={fi,fj,fa,fb},V[4]={vi,vj,va,vb};
            bool flag=1;
            for(int x=0;x<4;++x) for(int y=0;y<4;++y)
            if(F[x]==F[y]&&V[x]!=V[y]) {flag=false;break;}
            for(int x=0;x<4;++x) for(int y=0;y<4;++y)
            if(g[F[x]][F[y]]&&sgn(V[x]-V[y])!=g[F[x]][F[y]]) {flag=false;break;}
            if( !flag ) continue;
            if( va + vb > vi + vj ) t1 = 1;
            if( va + vb == vi + vj ) t2 = 1;
            if( va + vb < vi + vj ) t3 = 1;
        }
        if( t1 + t2 + t3 == 1 ) ans1 += t1, ans2 += t2, ans3 += t3;
    }
    printf("%d %d %d\n",ans1,ans2,ans3);
}
 

BZOJ1077 并查集的更多相关文章

  1. BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]

    4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...

  2. 关押罪犯 and 食物链(并查集)

    题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用"怨气值"( ...

  3. 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

    图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...

  4. bzoj1854--并查集

    这题有一种神奇的并查集做法. 将每种属性作为一个点,每种装备作为一条边,则可以得到如下结论: 1.如果一个有n个点的连通块有n-1条边,则我们可以满足这个连通块的n-1个点. 2.如果一个有n个点的连 ...

  5. [bzoj3673][可持久化并查集 by zky] (rope(可持久化数组)+并查集=可持久化并查集)

    Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0& ...

  6. [bzoj3123][sdoi2013森林] (树上主席树+lca+并查集启发式合并+暴力重构森林)

    Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...

  7. 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1878  Solved: 846[Submit][Status ...

  8. Codeforces 731C Socks 并查集

    题目:http://codeforces.com/contest/731/problem/C 思路:并查集处理出哪几堆袜子是同一颜色的,对于每堆袜子求出出现最多颜色的次数,用这堆袜子的数目减去该值即为 ...

  9. “玲珑杯”ACM比赛 Round #7 B -- Capture(并查集+优先队列)

    题意:初始时有个首都1,有n个操作 +V表示有一个新的城市连接到了V号城市 -V表示V号城市断开了连接,同时V的子城市也会断开连接 每次输出在每次操作后到首都1距离最远的城市编号,多个距离相同输出编号 ...

随机推荐

  1. js 函数对象的继承 inherit 带 插件完整解析版[helpers.js]

    前言:         本人纯小白一个,有很多地方理解的没有各位大牛那么透彻,如有错误,请各位大牛指出斧正!小弟感激不尽.         本篇文章为您分析一下原生JS的对象继承方法 需求分析: 1. ...

  2. poj_2393 Yogurt factory 贪心

    Yogurt factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16669   Accepted: 8176 D ...

  3. SpringCloud之整合Feign

    假设提供者有如下服务接口方法 @RestController @RequestMapping("/person") public class PersonController { ...

  4. 如何在github上递交高质量的pull request

    开源的一大乐趣就是任何人都可以参与其中.试想下一个流行的项目就有你贡献的代码,是一件多么爽的事情!你可以帮助项目健康发展,添加你希望添加的功能,以及修复你发现的BUG. 作为全球最大的开源社区GitH ...

  5. Swift-Realm数据库的使用详解

    Swift-Realm数据库的使用详解 概述 Realm 是一个跨平台的移动数据库引擎,其性能要优于 Core Data 和 FMDB - 移动端数据库性能比较, 我们可以在 Android 端 re ...

  6. Linux 开发之线程条件锁那些事

    2019独角兽企业重金招聘Python工程师标准>>> 条件锁即在一定条件下触发,那什么时候适合用条件锁呢,那当然是你在等待一个符合的条件下触发.一个常用的例子就是在线程中无限循环执 ...

  7. Android多线程下载远程图片

    修改后的代码 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 ...

  8. spark系列-4、spark序列化方案、GC对spark性能的影响

    一.spark的序列化 1.1.官网解释 http://spark.apache.org/docs/2.1.1/tuning.html#data-serialization 序列化在任何分布式应用程序 ...

  9. 【Python】Django2.0集成Celery4.1详解

    环境准备 Python3.6 pip install Django==2.0.1 pip install celery==4.1.0 pip install eventlet (加入协程支持) 安装e ...

  10. P2002 消息扩散(缩点)

    描述:https://www.luogu.com.cn/problem/P2002 有n个城市,中间有单向道路连接,消息会沿着道路扩散,现在给出n个城市及其之间的道路,问至少需要在几个城市发布消息才能 ...