题意:求满足gcd(x,y,z)=G,lcm(x,y,z)=L的x,y,z的解的个数。

大致思路:首先如果L % G != 0那么无解,否则令u = L / G,问题变为,gcd(r,s,t)=1,lcm(r,s,t)=u的解的个数。然后将u分解质因数,令u=a1p1*...*akpk,考虑一种质因数ai,它不可能同时出现在r,s,t中,枚举所有情况:(1)只出现在r或s或t中,这3种情况答案都为1 (2)出现在r和s或r和t或s和t中,这3种情况答案都为2(pi-1)+1=2pi-1,所以对每一种因子答案为3*(2pi-1)+3=6pi,由乘法原理,最后答案为6k*p1*p2*...*pk。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<stdlib.h>
#include<algorithm>
#include<math.h>
using namespace std;
typedef long long LL;
int b, a;
LL solve() {
    int x = b / a;
    int p[100], c = 0;
    for (int i = 2; (LL)i * i <= x; i ++) {
        while (x % i == 0) {
            p[c ++] = i;
            x /= i;
        }
    }
    if (x > 1) p[c ++] = x;
    p[c ++] = 0;
    LL ans = 1;
    int k = 0, last = 0;
    for (int i = 1; i < c; i ++) {
        if (p[i] != p[i - 1]) {
            k ++;
            ans *= (i - last);
            last = i;
        }
    }
    for (int i = 0; i < k; i ++) ans *= 6;
    return ans;
}
int main(){
    int T;
    cin >> T;
    while (T --) {
        cin >> a >> b;
        if (b % a != 0) puts("0");
        else cout << solve() << endl;
    }
    return 0;
}

[hdu4497]分解质因数的更多相关文章

  1. java分解质因数

      package test; import java.util.Scanner; public class Test19 { /** * 分析:对n进行分解质因数,应先找到一个最小的质数k * 最小 ...

  2. 程序设计入门——C语言 第6周编程练习 1 分解质因数(5分)

    1 分解质因数(5分) 题目内容: 每个非素数(合数)都可以写成几个素数(也可称为质数)相乘的形式,这几个素数就都叫做这个合数的质因数.比如,6可以被分解为2x3,而24可以被分解为2x2x2x3. ...

  3. 【python】将一个正整数分解质因数

    def reduceNum(n): '''题目:将一个正整数分解质因数.例如:输入90,打印出90=2*3*3*5''' print '{} = '.format(n), : print 'Pleas ...

  4. light oj 1236 分解质因数

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/H 题意:求满足1<=i<=j<=n ...

  5. 【基础数学】质数,约数,分解质因数,GCD,LCM

    1.质数: 质数(prime number)又称素数,有无限个.一个大于1的自然数,除了1和它本身外,不能整除以其他自然数(质数),换句话说就是该数除了1和它本身以外不再有其他的因数. 2.约数: 如 ...

  6. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m

    给定两个数m,n,其中m是一个素数. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m. 输入 第一行是一个整数s(0<s<=100),表示测试数据的组数 随后 ...

  7. cdoj 1246 每周一题 拆拆拆~ 分解质因数

    拆拆拆~ Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/problem/show/1246 Descri ...

  8. hdu 5428 The Factor 分解质因数

    The Factor  Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contests/contest ...

  9. UVa 10622 (gcd 分解质因数) Perfect P-th Powers

    题意: 对于32位有符号整数x,将其写成x = bp的形式,求p可能的最大值. 分析: 将x分解质因数,然后求所有指数的gcd即可. 对于负数还要再处理一下,负数求得的p必须是奇数才行. #inclu ...

随机推荐

  1. 莫名的证书错误...ERROR ITMS-90035:"Invalid Signature.

    请删除 .DS_Store 这种类似的文件再尝试

  2. springboot前后端分离跨域

    @Configurationpublic class CrossConfig implements WebMvcConfigurer { @Override public void addCorsMa ...

  3. 【题解】POJ3041 Asteroids - 图论 - 二分图匹配

    声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 POJ3041 Asteroids 题目描述 假如你现在正处在一个 \(N*N\ ...

  4. 你知道什么是 GitHub Action 么?

    本文是 GitHub Action 的入门教程,如您已有相关使用经验可以直接关掉. GitHub Action 是 GitHub 于 2018 年 10 月推出的一个 CI\CD 服务. 之前一直都是 ...

  5. pytorch中的前项计算和反向传播

    前项计算1 import torch # (3*(x+2)^2)/4 #grad_fn 保留计算的过程 x = torch.ones([2,2],requires_grad=True) print(x ...

  6. node 搭载本地代理,处理web本地开发跨域问题

    var path = require('path') var httpProxy = require('http-proxy') var express = require('express') va ...

  7. 微信自动关闭内置浏览器页面,返回公众号窗口 WeixinJSBridge.call('closeWindow')

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  8. DEDE Fatal error: Maximum execution time of 30 seconds exceeded 致命 错误: 最大的 执行 时间 为 30 秒

    刚安的DEDE    5.7 -SP1-GBK的  为何一登录后台点任何链接都显示超过30秒  后台假死 网上搜的方法一般都是更改执行时间上限,其目的是为了解决一些大的数据,真的需要30秒以上的执行时 ...

  9. myod实验(选做)

    myod实验 实验任务 1 复习c文件处理内容 2 编写myod.c 用myod XXX实现Linux下od -tx -tc XXX的功能 main与其他分开,制作静态库和动态库 编写Makefile ...

  10. Cent OS 7 添加 EPEL Nux Dextop ELRepo等源

    Cent OS 7 添加第三方yum源 CentOS由于很追求稳定性,所以官方源中自带的软件不多,因而需要一些第三方源. 比如EPEL.ATrpms.ELRepo.Nux Dextop.RepoFor ...