[hdu3572]最大流(dinic)
题意:有m台机器,n个任务,每个任务需要在第si~ei天之间,且需要pi天才能完成,每台机器每天只能做一个任务,不同机器每天不能做相同任务,判断所有任务是否可以做完。
思路: 把影响答案的对象提取出来,得到以下几个:机器,任务,时间;需要用一个量把这三者联系起来,不难想到用工作量来表示。从源点向每个任务连一条容量为pi的有向边,表示这个任务需要pi个工作量才能完成,从每个任务向第si天到第ei天各连一条容量为1的有向边,表示这个任务可以在第si天到第ei天的任意一天“消耗”1个工作量,或者说第si天到第ei天的任意一天都可以花一个工作量来做这个工作,从每一天向汇点连一条容量为m的边,表示每一天允许产生m个工作量(m台机器每天产生m个工作量)。跑一遍最大流,看最大流是否等于所有任务的pi的和即可。
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
/* ******************************************************************************** */#include <iostream> //#include <cstdio> //#include <cmath> //#include <cstdlib> //#include <cstring> //#include <vector> //#include <ctime> //#include <deque> //#include <queue> //#include <algorithm> //#include <map> //using namespace std; // //#define pb push_back //#define mp make_pair //#define X first //#define Y second //#define all(a) (a).begin(), (a).end() //#define foreach(a, i) for (typeof(a.begin()) i = a.begin(); i != a.end(); ++ i) //#define fill(a, x) memset(a, x, sizeof(a)) // //void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);} //void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R> //void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1; //while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T> //void print(const T t){cout<<t<<endl;}template<typename F,typename...R> //void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T> //void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;} // //typedef pair<int, int> pii; //typedef long long ll; //typedef unsigned long long ull; // //template<typename T>bool umax(T&a, const T&b){return b>a?false:(a=b,true);} //template<typename T>bool umin(T&a, const T&b){return b<a?false:(a=b,true);} //template<typename T> //void V2A(T a[],const vector<T>&b){for(int i=0;i<b.size();i++)a[i]=b[i];} //template<typename T> //void A2V(vector<T>&a,const T b[]){for(int i=0;i<a.size();i++)a[i]=b[i];} // ///* -------------------------------------------------------------------------------- */struct Dinic {private: const static int maxn = 1e3 + 7; struct Edge { int from, to, cap; Edge(int u, int v, int w): from(u), to(v), cap(w) {} }; int s, t; vector<Edge> edges; vector<int> G[maxn]; bool vis[maxn]; int d[maxn], cur[maxn]; bool bfs() { memset(vis, 0, sizeof(vis)); queue<int> Q; Q.push(s); d[s] = 0; vis[s] = true; while (!Q.empty()) { int x = Q.front(); Q.pop(); for (int i = 0; i < G[x].size(); i ++) { Edge &e = edges[G[x][i]]; if (!vis[e.to] && e.cap) { vis[e.to] = true; d[e.to] = d[x] + 1; Q.push(e.to); } } } return vis[t]; } int dfs(int x, int a) { if (x == t || a == 0) return a; int flow = 0, f; for (int &i = cur[x]; i < G[x].size(); i ++) { Edge &e = edges[G[x][i]]; if (d[x] + 1 == d[e.to] && (f = dfs(e.to, min(a, e.cap))) > 0) { e.cap -= f; edges[G[x][i] ^ 1].cap += f; flow += f; a -= f; if (a == 0) break; } } return flow; }public: void clear() { for (int i = 0; i < maxn; i ++) G[i].clear(); edges.clear(); memset(d, 0, sizeof(d)); } void add(int from, int to, int cap) { edges.push_back(Edge(from, to, cap)); edges.push_back(Edge(to, from, 0)); int m = edges.size(); G[from].push_back(m - 2); G[to].push_back(m - 1); } int solve(int s, int t) { this->s = s; this->t = t; int flow = 0; while (bfs()) { memset(cur, 0, sizeof(cur)); flow += dfs(s, 1e9); } return flow; }};Dinic solver;const int maxn = 507;int p[maxn], s[maxn], e[maxn];int main() {#ifndef ONLINE_JUDGE freopen("in.txt", "r", stdin);#endif // ONLINE_JUDGE int T, n, m, cas = 0; cin >> T; while (T --) { cin >> n >> m; solver.clear(); int total = 0; for (int i = 1; i <= n; i ++) { scanf("%d%d%d", p + i, s + i, e + i); total += p[i]; } for (int i = 1; i <= n; i ++) { solver.add(0, i, p[i]); for (int j = s[i]; j <= e[i]; j ++) { solver.add(i, n + j, 1); } } for (int i = 1; i <= 500; i ++) solver.add(n + i, n + 501, m); printf("Case %d: ", ++ cas); puts(solver.solve(0, n + 501) == total? "Yes" : "No"); puts(""); } return 0; //} // // // ///* ******************************************************************************** */ |
[hdu3572]最大流(dinic)的更多相关文章
- 网络流之最大流Dinic算法模版
/* 网络流之最大流Dinic算法模版 */ #include <cstring> #include <cstdio> #include <queue> using ...
- poj-1459-最大流dinic+链式前向星-isap+bfs+stack
title: poj-1459-最大流dinic+链式前向星-isap+bfs+stack date: 2018-11-22 20:57:54 tags: acm 刷题 categories: ACM ...
- 网络流之最大流Dinic --- poj 1459
题目链接 Description A power network consists of nodes (power stations, consumers and dispatchers) conne ...
- 网络最大流Dinic
1.什么是网络最大流 形象的来说,网络最大流其实就是这样一个生活化的问题:现在有一个由许多水管组成的水流系统,每一根管道都有自己的最大通过水流限制(流量),超过这个限制水管会爆(你麻麻就会来找你喝茶q ...
- hdu-3572 Task Schedule---最大流判断满流+dinic算法
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3572 题目大意: 给N个任务,M台机器.每个任务有最早才能开始做的时间S,deadline E,和持 ...
- HDU 3572 Task Schedule(拆点+最大流dinic)
Task Schedule Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- 学习笔记 --- 最大流Dinic算法
为与机房各位神犇同步,学习下网络流,百度一下发现竟然那么多做法,最后在两种算法中抉择,分别是Dinic和ISAP算法,问过 CA爷后得知其实效率上无异,所以决定跟随Charge的步伐学习Dinic,所 ...
- Power Network(网络流最大流 & dinic算法 + 优化)
Power Network Time Limit: 2000MS Memory Limit: 32768K Total Submissions: 24019 Accepted: 12540 D ...
- ZOJ-2364 Data Transmission 分层图阻塞流 Dinic+贪心预流
题意:给定一个分层图,即只能够在相邻层次之间流动,给定了各个顶点的层次.要求输出一个阻塞流. 分析:该题直接Dinic求最大流TLE了,网上说采用Isap也TLE,而最大流中的最高标号预流推进(HLP ...
随机推荐
- G. 大树的水塘
已知每块石头中的规格是1×1×1,水塘的长度为N,宽度为1,在第i位置,大树放了ai个石头 设大树建造的水塘蓄水量为V 请你求出在长度和宽度不变的情况下,建造一个蓄水量不小于V的水塘最多可以节约多少石 ...
- api_DZFPKJ & api_DZFPCX
AES加密算法的网站:http://www.ssleye.com/aes_cipher.html """ AES加密(加解密算法/工作模式/填充方式:AES/ECB/PK ...
- [XML] XML格式【有道翻译】API 的数据转化输出
<?php header("content-type:text/html;charset=utf-8"); //echo "飞飞仔超级智障"; $cont ...
- 它来了!它来了!Seata Go Client 它来了!!!
抱歉抱歉,这个标题一看就是个很标题党的标题.本文所述的 Seata Go Client 只支持 TCC 模式,并不像 Java 版的能支持到 AT 模式.SAGA 模式.XA 模式,聊胜于无.说到这里 ...
- bm25算法和tfidf
- tp5--开发规范
在日常开发的过程中,写代码都要有一定的规范,不然可读取就太差了,所以为了以后的维护.对接,好的代码规定是必须的. 以下是我自己对自己提出的要求: 全部: 1) 每个方法都要写好备注(@retrun作 ...
- 理解分布式一致性:Raft协议
理解分布式一致性:Raft协议 什么是分布式一致性 Leader选举 日志复制流程 term选举周期 timeout 选举和选举timeout 选举分裂 日志复制和心跳timeout 在分布式系统中, ...
- java 之 javaBean
什么是JavaBean? JavaBean是特殊的Java类,使用J ava语言书写,并且遵守JavaBean API规范. JavaBean与其它Java类相比而言独一无二的特征: 提供一个默认的无 ...
- ACM-ICPC 2019 山东省省赛总结
五题手快拿银,不然拿铜,甚至不拿,从结果上来看拿了铜牌对第一年的我们来说算好的,也不算太好. 从拿奖后的第一天,我想写这篇博客,但是我忍了下来,那时候被喜悦冲昏了头脑,当 冷静下来,我开始打算写这篇博 ...
- P6474 [NOI Online #2 入门组] 荆轲刺秦王
P6474 [NOI Online #2 入门组] 荆轲刺秦王 bfs+差分+卡常 本来我其实是场内选手,但是因为记错提交时间,晚了半小时才交,交不上了,就自动降级为了场外选手 题面复杂,不简述了 首 ...