图论--LCA--在线RMQ ST
板子测试POJ1330,一发入魂,作者是KuangBin神犇,感谢?
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 10010;
int rmq[2 * MAXN]; // rmq数组,就是欧拉序列对应的深度序列
struct ST
{
int mm[2 * MAXN];
int dp[2 * MAXN][20]; // 最小值对应的下标
void init(int n)
{
mm[0] = -1;
for (int i = 1; i <= n; i++)
{
mm[i] = ((i & (i - 1)) == 0) ? mm[i - 1] + 1 : mm[i - 1];
dp[i][0] = i;
}
for (int j = 1; j <= mm[n]; j++)
{
for (int i = 1; i + (1 << j) - 1 <= n; i++)
{
dp[i][j] = rmq[dp[i][j - 1]] < rmq[dp[i + (1 << (j - 1))][j - 1]] ? dp[i][j - 1] : dp[i + (1 << (j - 1))][j - 1];
}
}
}
int query(int a,int b) // 查询[a,b]之间最小值的下标
{
if (a > b)
{
swap(a, b);
}
int k = mm[b - a + 1];
return rmq[dp[a][k]] <= rmq[dp[b - (1 << k) + 1][k]] ? dp[a][k] : dp[b - (1 << k) + 1][k];
}
};
// 边的结构体定义
struct Edge
{
int to, next;
};
Edge edge[MAXN * 2];
int tot, head[MAXN];
int F[MAXN * 2]; // 欧拉序列,就是dfs遍历的顺序,长度为2*n-1,下标从1开始
int P[MAXN]; // P[i]表示点i在F中第一次出现的位置
int cnt;
ST st;
void init()
{
tot = 0;
memset(head, -1, sizeof(head));
}
void addedge(int u, int v) // 加边,无向边需要加两次
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void dfs(int u, int pre, int dep)
{
F[++cnt] = u;
rmq[cnt] = dep;
P[u] = cnt;
for (int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if (v == pre)
{
continue;
}
dfs(v, u, dep + 1);
F[++cnt] = u;
rmq[cnt] = dep;
}
}
void LCA_init(int root, int node_num) // 查询LCA前的初始化
{
cnt = 0;
dfs(root, root, 0);
st.init(2 * node_num - 1);
}
int query_lca(int u, int v) // 查询u,v的lca编号
{
return F[st.query(P[u], P[v])];
}
bool flag[MAXN];
int main()
{
int T;
int N;
int u, v;
scanf("%d", &T);
while(T--)
{
scanf("%d", &N);
init();
memset(flag, false, sizeof(flag));
for (int i = 1; i < N; i++)
{
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
flag[v] = true;
}
int root;
for (int i = 1; i <= N; i++)
{
if (!flag[i])
{
root = i;
break;
}
}
LCA_init(root, N);
scanf("%d%d", &u, &v);
printf("%d\n", query_lca(u, v));
}
return 0;
}
图论--LCA--在线RMQ ST的更多相关文章
- LCA在线算法ST算法
求LCA(近期公共祖先)的算法有好多,按在线和离线分为在线算法和离线算法. 离线算法有基于搜索的Tarjan算法较优,而在线算法则是基于dp的ST算法较优. 首先说一下ST算法. 这个算法是基于RMQ ...
- poj 1330 Nearest Common Ancestors lca 在线rmq
Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...
- hdu 2586(LCA在线ST)
How far away ? Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): A ...
- [CF 191C]Fools and Roads[LCA Tarjan算法][LCA 与 RMQ问题的转化][LCA ST算法]
参考: 1. 郭华阳 - 算法合集之<RMQ与LCA问题>. 讲得很清楚! 2. http://www.cnblogs.com/lazycal/archive/2012/08/11/263 ...
- lca 欧拉序+rmq(st) 欧拉序+rmq(线段树) 离线dfs 倍增
https://www.luogu.org/problemnew/show/P3379 1.欧拉序+rmq(st) /* 在这里,对于一个数,选择最左边的 选择任意一个都可以,[left_index, ...
- LCA和RMQ
下面写提供几个学习LCA和RMQ的博客,都很通熟易懂 http://dongxicheng.org/structure/lca-rmq/ 这个应该是讲得最好的,且博主还有很多其他文章,可以读读,感觉认 ...
- ZOJ 3195 Design the city LCA转RMQ
题意:给定n个点,下面n-1行 u , v ,dis 表示一条无向边和边权值,这里给了一颗无向树 下面m表示m个询问,问 u v n 三点最短距离 典型的LCA转RMQ #include<std ...
- hdu 3183 A Magic Lamp RMQ ST 坐标最小值
hdu 3183 A Magic Lamp RMQ ST 坐标最小值 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3183 题目大意: 从给定的串中挑 ...
- NYOJ 119 士兵杀敌(三) RMQ ST
NYOJ 119 士兵杀敌(三) RMQ ST 题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=119 思路: ST在线 预处理O(nlog ...
随机推荐
- Java第六天,API中常用的类,StringBuffer、StringBuilder、包装类、System类的使用
System (1)这个类中有很多可以获取系统信息的类. public class SystemLearn { public static void main(String[] args) { lon ...
- 汇编刷题:统计2000H开始的正负数的个数
DATA SEGMENT ORG 2000H INFO DB 1,2,3,4,5,70H,71H,72H,80H,92H N_NUMS DB 00H P_NUMS DB 00H DATA ENDS C ...
- Pod容器共享Volume
同一个Pod中的多个容器能够共享Pod级别的存储卷Volume.Volume可以被定义为各种类型,多个容器各自进行挂载操作,将一个Volume挂载为容器内部需要的目录,如图 在下面的例子中,在Pod内 ...
- javascript - 所有的视图属性和方法(offsetHeight、clientHeight、scrollHeight、innerHeight等)
注意:本文只简单的介绍了各个视图的属性和方法.如果想要知道兼容性或者更多,请至文章底部参考链接处. 本文内容分为五大部分: Window视图属性 innerHeight 和 innerWidth ou ...
- Spring 下,关于动态数据源的事务问题的探讨
开心一刻 毒蛇和蟒蛇在讨论谁的捕猎方式最高效. 毒蛇:我只需要咬对方一口,一段时间内它就会逐渐丧失行动能力,最后死亡. 蟒蛇冷笑:那还得等生效时间,我只需要缠住对方,就能立刻致它于死地. 毒蛇大怒:你 ...
- ModuleNotFoundError: No module named 'sklearn.cross_validation'
本文为CSDN博主「不服输的南瓜」的原创文章,遵循 CC 4.0 BY-SA 版权协议 原文链接 ModuleNotFoundError: No module named 'sklearn.cross ...
- 【Jenkins】插件更改国内源
最近调试脚本,本机安装了Jenkins,但是安装插件时一直失败.更改升级站点也不生效,究其原因是因为default.json中插件下载地址还https://updates.jenkins.io,升级站 ...
- CSS 中你应该了解的 BFC
我们常说的文档流其实分为定位流.浮动流和普通流三种.而普通流其实就是指BFC中的FC.FC是formatting context的首字母缩写,直译过来是格式化上下文,它是页面中的一块渲染区域,有一套渲 ...
- 跨行程序员Java进阶--基础语法
1.基础语法 Hello Wolrd 首先定义类 -- public class 类名 在类定义之后加上一对大括号 -- {} 在大括号中间添加一个主(main)方法/函数 -- public sta ...
- mysql相关面试题(一)
1.主键自增,姓名字段重复.删除重复的姓名数据,只留一条 -- Every derived table must have its own alias 子查询要起别名 -- 思路:分组后只会显示一条, ...