图论--LCA--在线RMQ ST
板子测试POJ1330,一发入魂,作者是KuangBin神犇,感谢?
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 10010;
int rmq[2 * MAXN]; // rmq数组,就是欧拉序列对应的深度序列
struct ST
{
int mm[2 * MAXN];
int dp[2 * MAXN][20]; // 最小值对应的下标
void init(int n)
{
mm[0] = -1;
for (int i = 1; i <= n; i++)
{
mm[i] = ((i & (i - 1)) == 0) ? mm[i - 1] + 1 : mm[i - 1];
dp[i][0] = i;
}
for (int j = 1; j <= mm[n]; j++)
{
for (int i = 1; i + (1 << j) - 1 <= n; i++)
{
dp[i][j] = rmq[dp[i][j - 1]] < rmq[dp[i + (1 << (j - 1))][j - 1]] ? dp[i][j - 1] : dp[i + (1 << (j - 1))][j - 1];
}
}
}
int query(int a,int b) // 查询[a,b]之间最小值的下标
{
if (a > b)
{
swap(a, b);
}
int k = mm[b - a + 1];
return rmq[dp[a][k]] <= rmq[dp[b - (1 << k) + 1][k]] ? dp[a][k] : dp[b - (1 << k) + 1][k];
}
};
// 边的结构体定义
struct Edge
{
int to, next;
};
Edge edge[MAXN * 2];
int tot, head[MAXN];
int F[MAXN * 2]; // 欧拉序列,就是dfs遍历的顺序,长度为2*n-1,下标从1开始
int P[MAXN]; // P[i]表示点i在F中第一次出现的位置
int cnt;
ST st;
void init()
{
tot = 0;
memset(head, -1, sizeof(head));
}
void addedge(int u, int v) // 加边,无向边需要加两次
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void dfs(int u, int pre, int dep)
{
F[++cnt] = u;
rmq[cnt] = dep;
P[u] = cnt;
for (int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if (v == pre)
{
continue;
}
dfs(v, u, dep + 1);
F[++cnt] = u;
rmq[cnt] = dep;
}
}
void LCA_init(int root, int node_num) // 查询LCA前的初始化
{
cnt = 0;
dfs(root, root, 0);
st.init(2 * node_num - 1);
}
int query_lca(int u, int v) // 查询u,v的lca编号
{
return F[st.query(P[u], P[v])];
}
bool flag[MAXN];
int main()
{
int T;
int N;
int u, v;
scanf("%d", &T);
while(T--)
{
scanf("%d", &N);
init();
memset(flag, false, sizeof(flag));
for (int i = 1; i < N; i++)
{
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
flag[v] = true;
}
int root;
for (int i = 1; i <= N; i++)
{
if (!flag[i])
{
root = i;
break;
}
}
LCA_init(root, N);
scanf("%d%d", &u, &v);
printf("%d\n", query_lca(u, v));
}
return 0;
}
图论--LCA--在线RMQ ST的更多相关文章
- LCA在线算法ST算法
求LCA(近期公共祖先)的算法有好多,按在线和离线分为在线算法和离线算法. 离线算法有基于搜索的Tarjan算法较优,而在线算法则是基于dp的ST算法较优. 首先说一下ST算法. 这个算法是基于RMQ ...
- poj 1330 Nearest Common Ancestors lca 在线rmq
Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...
- hdu 2586(LCA在线ST)
How far away ? Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): A ...
- [CF 191C]Fools and Roads[LCA Tarjan算法][LCA 与 RMQ问题的转化][LCA ST算法]
参考: 1. 郭华阳 - 算法合集之<RMQ与LCA问题>. 讲得很清楚! 2. http://www.cnblogs.com/lazycal/archive/2012/08/11/263 ...
- lca 欧拉序+rmq(st) 欧拉序+rmq(线段树) 离线dfs 倍增
https://www.luogu.org/problemnew/show/P3379 1.欧拉序+rmq(st) /* 在这里,对于一个数,选择最左边的 选择任意一个都可以,[left_index, ...
- LCA和RMQ
下面写提供几个学习LCA和RMQ的博客,都很通熟易懂 http://dongxicheng.org/structure/lca-rmq/ 这个应该是讲得最好的,且博主还有很多其他文章,可以读读,感觉认 ...
- ZOJ 3195 Design the city LCA转RMQ
题意:给定n个点,下面n-1行 u , v ,dis 表示一条无向边和边权值,这里给了一颗无向树 下面m表示m个询问,问 u v n 三点最短距离 典型的LCA转RMQ #include<std ...
- hdu 3183 A Magic Lamp RMQ ST 坐标最小值
hdu 3183 A Magic Lamp RMQ ST 坐标最小值 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3183 题目大意: 从给定的串中挑 ...
- NYOJ 119 士兵杀敌(三) RMQ ST
NYOJ 119 士兵杀敌(三) RMQ ST 题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=119 思路: ST在线 预处理O(nlog ...
随机推荐
- python3的subprocess的各个方法的区别(二)
subprocess如何避免死锁 如果交互是双工的,即涉及读取和写入,则尤其如此.这种交互可能导致死锁,因为两个进程都可能最终等待另一个进程的输出 您希望从子进程标准输出管道读取,但标准错误管道的缓冲 ...
- CH5501 环路运输(单调栈)
传送门 思路: 遇到一个环,用正常人类的思想就先把环从中间截断然后将其补成2*n长度的链.环上的最小距离换到链上就是i以n/2为半径范围内的点(画图肉眼可见).由于两个点是等价的,所以我们考虑有序对( ...
- python3(二十一) pip
先确保安装了windows的Python的pip 出现上图说明安装了,命令未找到则没有安装 安装一个图形处理的第三方库 Anaconda安装第三方库 我们经常需要用到很多第三方库,如MySQL驱动程序 ...
- Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(十一)之Holding Your Objects
To solve the general programming problem, you need to create any number of objects, anytime, anywher ...
- 【spring 国际化】springMVC、springboot国际化处理详解
在web开发中我们常常会遇到国际化语言处理问题,那么如何来做到国际化呢? 你能get的知识点? 使用springgmvc与thymeleaf进行国际化处理. 使用springgmvc与jsp进行国际化 ...
- stand up meeting 12/8/2015
part 组员 今日工作 工作耗时/h 明日计划 工作耗时/h UI 冯晓云 -------------- -- ----------- -- PDF Reader 朱玉影 ...
- SUCTF 2019 Upload labs 2 踩坑记录
SUCTF 2019 Upload labs 2 踩坑记录 题目地址 : https://github.com/team-su/SUCTF-2019/tree/master/Web/Upload La ...
- Liunx常用操作(一)-删除命令
在linux命令行模式下,如何一次性快速删除一行刚刚输入的命令? 经常在命令行输入命令的时候,一段文字都需要删除,一个字段一个字段,比较耗费时间 以下提供一些命令,配合在一起操作,可以一定程度提高工作 ...
- Spring Cloud Gateway+Nacos,yml+properties两种配置文件方式搭建网关服务
写在前面 网关的作用不在此赘述,举个最常用的例子,我们搭建了微服务,前端调用各服务接口时,由于各服务接口不一样,如果让前端同事分别调用,前端同事会疯的.而网关就可以解决这个问题,网关屏蔽了各业务服务的 ...
- ASP.NET Core Razor Pages 初探
最近新建 Asp.net Core MVC 项目的时候不小心选错了个模板,发现了一种新的项目模板.它使用cshtml视图模板,但是没有Controller文件夹.后来才发现这是ASP.NET Core ...