板子测试POJ1330,一发入魂,作者是KuangBin神犇,感谢?‍

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 10010;
int rmq[2 * MAXN]; // rmq数组,就是欧拉序列对应的深度序列 struct ST
{
int mm[2 * MAXN];
int dp[2 * MAXN][20]; // 最小值对应的下标
void init(int n)
{
mm[0] = -1;
for (int i = 1; i <= n; i++)
{
mm[i] = ((i & (i - 1)) == 0) ? mm[i - 1] + 1 : mm[i - 1];
dp[i][0] = i;
}
for (int j = 1; j <= mm[n]; j++)
{
for (int i = 1; i + (1 << j) - 1 <= n; i++)
{
dp[i][j] = rmq[dp[i][j - 1]] < rmq[dp[i + (1 << (j - 1))][j - 1]] ? dp[i][j - 1] : dp[i + (1 << (j - 1))][j - 1];
}
}
}
int query(int a,int b) // 查询[a,b]之间最小值的下标
{
if (a > b)
{
swap(a, b);
}
int k = mm[b - a + 1];
return rmq[dp[a][k]] <= rmq[dp[b - (1 << k) + 1][k]] ? dp[a][k] : dp[b - (1 << k) + 1][k];
}
}; // 边的结构体定义
struct Edge
{
int to, next;
}; Edge edge[MAXN * 2]; int tot, head[MAXN];
int F[MAXN * 2]; // 欧拉序列,就是dfs遍历的顺序,长度为2*n-1,下标从1开始
int P[MAXN]; // P[i]表示点i在F中第一次出现的位置
int cnt;
ST st; void init()
{
tot = 0;
memset(head, -1, sizeof(head));
} void addedge(int u, int v) // 加边,无向边需要加两次
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} void dfs(int u, int pre, int dep)
{
F[++cnt] = u;
rmq[cnt] = dep;
P[u] = cnt;
for (int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if (v == pre)
{
continue;
}
dfs(v, u, dep + 1);
F[++cnt] = u;
rmq[cnt] = dep;
}
} void LCA_init(int root, int node_num) // 查询LCA前的初始化
{
cnt = 0;
dfs(root, root, 0);
st.init(2 * node_num - 1);
} int query_lca(int u, int v) // 查询u,v的lca编号
{
return F[st.query(P[u], P[v])];
}
bool flag[MAXN]; int main()
{
int T;
int N;
int u, v;
scanf("%d", &T);
while(T--)
{
scanf("%d", &N);
init();
memset(flag, false, sizeof(flag));
for (int i = 1; i < N; i++)
{
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
flag[v] = true;
}
int root;
for (int i = 1; i <= N; i++)
{
if (!flag[i])
{
root = i;
break;
}
}
LCA_init(root, N);
scanf("%d%d", &u, &v);
printf("%d\n", query_lca(u, v));
}
return 0;
}

图论--LCA--在线RMQ ST的更多相关文章

  1. LCA在线算法ST算法

    求LCA(近期公共祖先)的算法有好多,按在线和离线分为在线算法和离线算法. 离线算法有基于搜索的Tarjan算法较优,而在线算法则是基于dp的ST算法较优. 首先说一下ST算法. 这个算法是基于RMQ ...

  2. poj 1330 Nearest Common Ancestors lca 在线rmq

    Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...

  3. hdu 2586(LCA在线ST)

    How far away ? Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): A ...

  4. [CF 191C]Fools and Roads[LCA Tarjan算法][LCA 与 RMQ问题的转化][LCA ST算法]

    参考: 1. 郭华阳 - 算法合集之<RMQ与LCA问题>. 讲得很清楚! 2. http://www.cnblogs.com/lazycal/archive/2012/08/11/263 ...

  5. lca 欧拉序+rmq(st) 欧拉序+rmq(线段树) 离线dfs 倍增

    https://www.luogu.org/problemnew/show/P3379 1.欧拉序+rmq(st) /* 在这里,对于一个数,选择最左边的 选择任意一个都可以,[left_index, ...

  6. LCA和RMQ

    下面写提供几个学习LCA和RMQ的博客,都很通熟易懂 http://dongxicheng.org/structure/lca-rmq/ 这个应该是讲得最好的,且博主还有很多其他文章,可以读读,感觉认 ...

  7. ZOJ 3195 Design the city LCA转RMQ

    题意:给定n个点,下面n-1行 u , v ,dis 表示一条无向边和边权值,这里给了一颗无向树 下面m表示m个询问,问 u v n 三点最短距离 典型的LCA转RMQ #include<std ...

  8. hdu 3183 A Magic Lamp RMQ ST 坐标最小值

    hdu 3183 A Magic Lamp RMQ ST 坐标最小值 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3183 题目大意: 从给定的串中挑 ...

  9. NYOJ 119 士兵杀敌(三) RMQ ST

    NYOJ 119 士兵杀敌(三) RMQ ST 题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=119 思路: ST在线 预处理O(nlog ...

随机推荐

  1. python3的subprocess的各个方法的区别(二)

    subprocess如何避免死锁 如果交互是双工的,即涉及读取和写入,则尤其如此.这种交互可能导致死锁,因为两个进程都可能最终等待另一个进程的输出 您希望从子进程标准输出管道读取,但标准错误管道的缓冲 ...

  2. CH5501 环路运输(单调栈)

    传送门 思路: 遇到一个环,用正常人类的思想就先把环从中间截断然后将其补成2*n长度的链.环上的最小距离换到链上就是i以n/2为半径范围内的点(画图肉眼可见).由于两个点是等价的,所以我们考虑有序对( ...

  3. python3(二十一) pip

    先确保安装了windows的Python的pip 出现上图说明安装了,命令未找到则没有安装 安装一个图形处理的第三方库 Anaconda安装第三方库 我们经常需要用到很多第三方库,如MySQL驱动程序 ...

  4. Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(十一)之Holding Your Objects

    To solve the general programming problem, you need to create any number of objects, anytime, anywher ...

  5. 【spring 国际化】springMVC、springboot国际化处理详解

    在web开发中我们常常会遇到国际化语言处理问题,那么如何来做到国际化呢? 你能get的知识点? 使用springgmvc与thymeleaf进行国际化处理. 使用springgmvc与jsp进行国际化 ...

  6. stand up meeting 12/8/2015

    part 组员 今日工作 工作耗时/h 明日计划 工作耗时/h UI 冯晓云  --------------    --  -----------  -- PDF Reader 朱玉影         ...

  7. SUCTF 2019 Upload labs 2 踩坑记录

    SUCTF 2019 Upload labs 2 踩坑记录 题目地址 : https://github.com/team-su/SUCTF-2019/tree/master/Web/Upload La ...

  8. Liunx常用操作(一)-删除命令

    在linux命令行模式下,如何一次性快速删除一行刚刚输入的命令? 经常在命令行输入命令的时候,一段文字都需要删除,一个字段一个字段,比较耗费时间 以下提供一些命令,配合在一起操作,可以一定程度提高工作 ...

  9. Spring Cloud Gateway+Nacos,yml+properties两种配置文件方式搭建网关服务

    写在前面 网关的作用不在此赘述,举个最常用的例子,我们搭建了微服务,前端调用各服务接口时,由于各服务接口不一样,如果让前端同事分别调用,前端同事会疯的.而网关就可以解决这个问题,网关屏蔽了各业务服务的 ...

  10. ASP.NET Core Razor Pages 初探

    最近新建 Asp.net Core MVC 项目的时候不小心选错了个模板,发现了一种新的项目模板.它使用cshtml视图模板,但是没有Controller文件夹.后来才发现这是ASP.NET Core ...