KMP算法复杂度证明
引言
KMP算法应该是看了一次又一次,比赛的时候字符串不是我负责,所以学到的东西又还给网上的博客了……
退役后再翻开看,看到模板,心想这不是\(O(n^2)\)的复杂度吗?
有两个循环也不能看做是\(O(n^2)\)的,这要用到摊还分析.
模板
这里用到的模板是算竞上的
calc_next()
Next[1] = 0;
for (int i = 2, j = 0; i <= n; ++i) {
while (j > 0 && a[i] != a[j + 1]) j = Next[j];
if (a[i] == a[j + 1]) ++j;
Next[i] = j;
}
kmp()
for (int i = 1, j = 0; i <= m; ++i) {
while (j > 0 && (j == n || b[i] != a[j + 1]))j = Next[j];
if (b[i] == a[j + 1])++j;
f[i] = j;
}
可以发现上下两个函数挺像的,Next[i]含义就是模式串以\(i\)结尾的子串([1..i]的后缀)与模式串的前缀能匹配的最长长度
证明
观察发现有两个操作:
- 匹配成功:
j++,这个代价是1 - 匹配失败:
j=Next[j]还要经过while循环,这个代价未知
根据记账法,假设每个平摊代价是2,对于每个匹配成功的操作,其中1元用来j++,另1元就存起来,给后面匹配失败时用:

而当失配的时候,就会用到银行存款,最坏的情况当然就是用光了所有存款,但可以发现每个匹配的操作分配两个时间代价是完全足够的
换句话说,你使用存款肯定得要求银行有存款,而每次j++操作都会存1元,在当前j前面必然每个位置都是有大于等于1的存款
所以复杂度就是j++次数的两倍,也就是匹配串的长度 \(2n\)
根据平摊分析要求\(\check c_i \ge c_i\),平摊代价设置为\(2\)是完全满足的
综上所述:KMP算法两个函数的总体运算次数为\(2n+2m\),复杂度是\(O(n+m)\)
总结
也不知道这样分析对不对,如果只是感性理解的话足够了.
也有势能法的做法,但是这样的话就要定义势能函数,我觉得记账法还是好理解一点.
KMP算法复杂度证明的更多相关文章
- KMP算法的正确性证明及一个小优化
直接把作业帖上来是不是有点不太公道呀... 无所谓啦反正各位看着开心就行 KMP算法 对于模式串$P$,建立其前缀函数$ N$ ,其中$N [q] $ 表示在$P$中,以$q$位置为结束的可以匹配到前 ...
- 算法导论17:摊还分析学习笔记(KMP复杂度证明)
在摊还分析中,通过求数据结构的一系列的操作的平均时间,来评价操作的代价.这样,即使这些操作中的某个单一操作的代价很高,也可以证明平均代价很低.摊还分析不涉及概率,它可以保证最坏情况下每个操作的平均性能 ...
- 浅析KMP算法
浅析KMP算法 KMP算法是一种线性字符串的匹配算法,将主串S与模式串T匹配. 首先朴素算法大家都会,就是直接从S的每一个位置开始,枚举比较,时间效率为O(nm),现在要想到一种化简的方式,使得时间复 ...
- 字符串匹配算法——KMP算法学习
KMP算法是用来解决字符串的匹配问题的,即在字符串S中寻找字符串P.形式定义:假设存在长度为n的字符数组S[0...n-1],长度为m的字符数组P[0...m-1],是否存在i,使得SiSi+1... ...
- 关于KMP算法理解(快速字符串匹配)
参考:http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html 2016-08- ...
- 【BZOJ3670】动物园(KMP算法)
[BZOJ3670]动物园(KMP算法) 题面 BZOJ 题解 神TM阅读理解题 看完题目之后 想暴力: 搞个倍增数组来跳\(next\) 每次暴跳\(next\) 复杂度\(O(Tnlogn)\) ...
- 算法进阶面试题01——KMP算法详解、输出含两次原子串的最短串、判断T1是否包含T2子树、Manacher算法详解、使字符串成为最短回文串
1.KMP算法详解与应用 子序列:可以连续可以不连续. 子数组/串:要连续 暴力方法:逐个位置比对. KMP:让前面的,指导后面. 概念建设: d的最长前缀与最长后缀的匹配长度为3.(前缀不能到最后一 ...
- 【BZOJ3670】【NOI2014】动物园(KMP算法)
[BZOJ3670]动物园(KMP算法) 题面 BZOJ 题解 神TM阅读理解题 看完题目之后 想暴力: 搞个倍增数组来跳\(next\) 每次暴跳\(next\) 复杂度\(O(Tnlogn)\) ...
- 简单有效的kmp算法
以前看过kmp算法,当时接触后总感觉好深奥啊,抱着数据结构的数啃了一中午,最终才大致看懂,后来提起kmp也只剩下“奥,它是做模式匹配的”这点干货.最近有空,翻出来算法导论看看,原来就是这么简单(先不说 ...
随机推荐
- PyCharm下创建并运行我们的第一个Django项目
PyCharm下创建并运行我们的第一个Django项目 准备工作: 假设读者已经安装好python 2x或3x,以及安装好Django,以及Pycharm 1. 创建一个新的工程 第一次运行Pycha ...
- 洛谷 P1776 宝物筛选(多重背包)
题目传送门 解题思路: 可以转化成0-1背包来做,但暴力转化的话,时间不允许.所以就用了一个二进制划分的方法,将m个物品分成2,4,8,16,32......(2的次方)表示,可以证明这些数通过一定组 ...
- Vue.js(18)之 axios简单封装
基于vue-cli2.x封装axios src目录 axios.js import axios from 'axios' import { Indicator, Toast } from 'mint- ...
- 网络寻路(DFS)
Description X 国的一个网络使用若干条线路连接若干个节点.节点间的通信是双向的.某重要数据包,为了安全起见,必须恰好被转发两次到达目的地.该包可能在任意一个节点产生,我们需要知道该网络中一 ...
- UML-设计模式-本地服务容错-代理模式
在<本地服务容错-适配器+工厂模式>中,总是优先尝试本地服务.但是,有时候需要先尝试外部服务,然后才是本地服务.GoF的代理模式可以解决这个问题. 1.代理模式的一般结构 2.使用代理模式 ...
- 基于仿生算法的智能系统I
仿生算法仿生算法是什么? 什么是仿生? 蜜蜂会造房子,人类就学习蜜蜂盖房子的方法,之后便有了航空建造工程的蜂窝结构. 仿生是模仿生物系统的功能和行为,来建造技术系统的一种科学方法.生活仿生作品现代的飞 ...
- VMWare WorkStation15--Win10下开机启动虚拟机
参考 https://www.cnblogs.com/qmfsun/p/6284236.html http://www.cnblogs.com/eliteboy/p/7838091.html VMWa ...
- solr8.0.0基本安装和在springboot中的基本使用(win10)
1.下载solr 下载地址:http://archive.apache.org/dist/lucene/solr/ 该地址可以也可以下载以前的版本,我这边下载的solr-8.0.0.zip版本.下载完 ...
- 使用代理IP访问网络
现在很多领域都需要用到代理IP,用到的领域越来越广,如爬虫.投票.抢购等等. 代理IP免费获取地址:http://www.xicidaili.com/(少部分可以用) 我这个案例使用的上面地址里面的免 ...
- mariabd mysql升级mariadb
还有错误 [root@localhost /]# mysqldump --all-databases --user=root --password --master-data > backupd ...