Tensorflow官方文档 input_data.py 下载
说明: 本篇文章适用于MNIST教程下载数据集。
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for downloading and reading MNIST data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import tensorflow.python.platform
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def maybe_download(filename, work_directory):
"""Download the data from Yann's website, unless it's already here."""
if not os.path.exists(work_directory):
os.mkdir(work_directory)
filepath = os.path.join(work_directory, filename)
if not os.path.exists(filepath):
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
return filepath
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def extract_labels(filename, one_hot=False):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return dense_to_one_hot(labels)
return labels
class DataSet(object):
def __init__(self, images, labels, fake_data=False, one_hot=False,
dtype=tf.float32):
"""Construct a DataSet.
one_hot arg is used only if fake_data is true. `dtype` can be either
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
`[0, 1]`.
"""
dtype = tf.as_dtype(dtype).base_dtype
if dtype not in (tf.uint8, tf.float32):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
dtype)
if fake_data:
self._num_examples = 10000
self.one_hot = one_hot
else:
assert images.shape[0] == labels.shape[0], (
'images.shape: %s labels.shape: %s' % (images.shape,
labels.shape))
self._num_examples = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
assert images.shape[3] == 1
images = images.reshape(images.shape[0],
images.shape[1] * images.shape[2])
if dtype == tf.float32:
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def num_examples(self):
return self._num_examples
@property
def epochs_completed(self):
return self._epochs_completed
def next_batch(self, batch_size, fake_data=False):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1] * 784
if self.one_hot:
fake_label = [1] + [0] * 9
else:
fake_label = 0
return [fake_image for _ in xrange(batch_size)], [
fake_label for _ in xrange(batch_size)]
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Shuffle the data
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self._images[perm]
self._labels = self._labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):
class DataSets(object):
pass
data_sets = DataSets()
if fake_data:
def fake():
return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
data_sets.train = fake()
data_sets.validation = fake()
data_sets.test = fake()
return data_sets
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000
local_file = maybe_download(TRAIN_IMAGES, train_dir)
train_images = extract_images(local_file)
local_file = maybe_download(TRAIN_LABELS, train_dir)
train_labels = extract_labels(local_file, one_hot=one_hot)
local_file = maybe_download(TEST_IMAGES, train_dir)
test_images = extract_images(local_file)
local_file = maybe_download(TEST_LABELS, train_dir)
test_labels = extract_labels(local_file, one_hot=one_hot)
validation_images = train_images[:VALIDATION_SIZE]
validation_labels = train_labels[:VALIDATION_SIZE]
train_images = train_images[VALIDATION_SIZE:]
train_labels = train_labels[VALIDATION_SIZE:]
data_sets.train = DataSet(train_images, train_labels, dtype=dtype)
data_sets.validation = DataSet(validation_images, validation_labels,
dtype=dtype)
data_sets.test = DataSet(test_images, test_labels, dtype=dtype)
return data_sets
Tensorflow官方文档 input_data.py 下载的更多相关文章
- 人工智能系统Google开源的TensorFlow官方文档中文版
人工智能系统Google开源的TensorFlow官方文档中文版 2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源,机器学习作为人工智能的一种类型,可以让软件根据大量的 ...
- tensorflow官方文档中的sub 和mul中的函数已经在API中改名了
在照着tensorflow 官方文档和极客学院中tensorflow中文文档学习tensorflow时,遇到下面的两个问题: 1)AttributeError: module 'tensorflow' ...
- TensorFlow 官方文档中文版 --技术文档
1.文档预览 2.文档下载 TensorFlow官方文档中文版-v1.2.pdf 提取码:pt7p
- TensorFlow 官方文档中文版【转】
转自:http://wiki.jikexueyuan.com/project/tensorflow-zh/ TensorFlow 官方文档中文版 你正在阅读的项目可能会比 Android 系统更加深远 ...
- TensorFlow 官方文档中文版
http://wiki.jikexueyuan.com/list/deep-learning/ TensorFlow 官方文档中文版 你正在阅读的项目可能会比 Android 系统更加深远地影响着世界 ...
- jQuery Form 表单提交插件----Form 简介,官方文档,官方下载地址
一.jQuery Form简介 jQuery Form插件是一个优秀的Ajax表单插件,可以非常容易地.无侵入地升级HTML表单以支持Ajax.jQuery Form有两个核心方法 -- ajaxF ...
- TensorFlow官方文档
关于<TensorFlow官方文档> <TensorFlow官方文档>原文地址:http://devdocs.io/tensorflow~python/ ,本次经过W3Csch ...
- TensorFlow 官方文档中文版学习
TensorFlow 官方文档中文版 地址:http://wiki.jikexueyuan.com/project/tensorflow-zh/
- 在 Ubuntu 上安装 TensorFlow (官方文档的翻译)
本指南介绍了如何在 Ubuntu 上安装 TensorFlow.这些指令也可能对其他 Linux 变体起作用, 但是我们只在Ubuntu 14.04 或更高版本上测试了(我们只支持) 这些指令. 一 ...
随机推荐
- 【JavaWeb】导入Excel并进行校验
一.需要实现的目标 1.界面编写 2.导入表读取表名,进行校验,后台匹配(判断此表的名称是否能够模糊匹配上) 3.确定表存在,读取其中的数据,暂存 4.正则表达式数据校验(判断是否已存在,数据是否符合 ...
- opencv人脸识别提取手机相册内人物充当数据集,身份识别学习(草稿)
未写完 采用C++,opencv+opencv contrib 4.1.0 对手机相册内人物opencv人脸识别,身份识别学习 最近事情多,介绍就先不介绍了 photocut.c #include & ...
- spring aop @after和@before之类的注解,怎么指定多个切点
有如下两个切点: @Pointcut("execution(public * com.wyh.data.controller.DepartmentController.*(..))" ...
- 如何去掉Eclipse注释中英文单词的拼写错误检查
- Lesson 16 The modern city
What is the author's main argument about the modern city? In the organization of industrial life the ...
- PAT T1002 Business
背包问题,把任务按截止日期排序,再按背包问题处理~ #include<bits/stdc++.h> using namespace std; ; struct node { int c; ...
- nginx访问目录是没加/的重定向控制
static 模块提供了root与alias功能:发现目标是目录时:但URI末尾未加/时:会返回301重定向:重定向后会加/ 指令 Syntax: server_name_in_redirect on ...
- js数组和java数组的区别
1,js数组可以自动扩容,不会出现数组越界的情况 2,js数组中可以存放任意数据类型 3,java数组一旦定义长度,不可以更改 4,java数组中的数据类型必须一致
- c++刷算法的好处
写再最前面:摘录于柳神的笔记 在已经学习过C语⾔的前提下,学习C++并使⽤它刷算法的学习成本⾮常低-只需要⼏个⼩时就可 以学会- C++向下兼容C,C语⾔⾥⾯的语法完全可以在C++⽂件中运⾏,所以学习 ...
- 列表推导式、生成器表达式以及zip()max()max()/min()sum()sort()map()filter()的用法
列表推导式: 基本格式: variable = [out_exp_res for out_exp in input_list if out_exp == 2] #out_exp_res: 列表生成元素 ...