样例迷,没过

交了30pts

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); (a) <= (c); ++(a))
#define nR(a,b,c) for(register int a = (b); (a) >= (c); --(a))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Swap(a,b) ((a) ^= (b) ^= (a) ^= (b))
#define ll long long
#define u32 unsigned int
#define u64 unsigned long long #define ON_DEBUGG #ifdef ON_DEBUGG #define D_e_Line printf("\n----------\n")
#define D_e(x) cout << (#x) << " : " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt", "r", stdin)
#define FileSave() freopen("out.txt", "w", stdout)
#include <ctime>
#define TIME() fprintf(stderr, "\ntime: %.3fms\n", clock() * 1000.0 / CLOCKS_PER_SEC) #else #define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ;
#define FileSave() ;
#define TIME() ;
//char buf[1 << 21], *p1 = buf, *p2 = buf;
//#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++) #endif using namespace std;
struct ios{
template<typename ATP>inline ios& operator >> (ATP &x){
x = 0; int f = 1; char ch;
for(ch = getchar(); ch < '0' || ch > '9'; ch = getchar()) if(ch == '-') f = -1;
while(ch >= '0' && ch <= '9') x = x * 10 + (ch ^ '0'), ch = getchar();
x *= f;
return *this;
}
}io; template<typename ATP>inline ATP Max(ATP a, ATP b){
return a > b ? a : b;
}
template<typename ATP>inline ATP Min(ATP a, ATP b){
return a < b ? a : b;
}
template<typename ATP>inline ATP Abs(ATP a){
return a < 0 ? -a : a;
}
#include <climits>
const int N = 1003;
const int MOD = 9999991; #define int long long
struct Edge{
int nxt, pre;
}e[N];
int head[N], cntEdge;
inline void add(int u, int v) {
e[++cntEdge] = (Edge){ head[u], v}, head[u] = cntEdge;
} int prime[1013], primeIndex;
bool vis[8007];
inline void EularPhi(int n) {
R(i,2,n){
if(!vis[i]) prime[++primeIndex] = i;
for(register int j = 1; j <= primeIndex && i * prime[j] <= n; ++j){
vis[i * prime[j]] = 1;
if(i % prime[j] == 0) break;
}
}
} int siz[N]; int f[N], g[N], fa[N];
inline void DFS(int u, int father){
siz[u] = 1;
f[u] = 1;
fa[u] = father;
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(v == father) continue;
DFS(v, u);
siz[u] += siz[v];
f[u] = (f[u] + f[v] * prime[siz[v]] % MOD + MOD) % MOD;
}
} namespace HASH{ struct Node{
int nxt, pre, w;
}e[N * N];
int head[MOD + 3], cntHash; struct Hash{ inline void Insert(int x, int id){
int u = x % MOD;
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(v == x){
return;
}
}
e[++cntHash] = (Node){ head[u], x, id}, head[u] = cntHash;
}
inline int Query(int x){
int u = x % MOD;
for(register int i = head[u]; i; i= e[i].nxt){
int v = e[i].pre;
if(v == x){
return e[i].w;
}
}
return 0;
} }H; } #undef int
int main(){
#define int long long
EularPhi(8000); int n, m;
io >> m;
R(id,1,m){ cntEdge = 0;
Fill(head, 0); io >> n;
R(i,1,n){
int fa;
io >> fa;
add(i, fa);
add(fa, i);
} DFS(0, 0); int sum = LLONG_MAX;
R(i,0,n){
DFS(i, i);
sum = Min(sum, f[i]);
} HASH::H.Insert(sum, id); printf("%lld\n", HASH::H.Query(sum));
} return 0;
}

{{uploading-image-151875.png(uploading...)}}

BZOJ4337 树的同构 (树哈希)(未完成)的更多相关文章

  1. bzoj4337: BJOI2015 树的同构 树哈希判同构

    题目链接 bzoj4337: BJOI2015 树的同构 题解 树哈希的一种方法 对于每各节点的哈希值为hash[x] = hash[sonk[x]] * p[k]; p为素数表 代码 #includ ...

  2. BZOJ4337:[BJOI2015]树的同构(树hash)

    Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如 ...

  3. [BZOJ4337][BJOI2015]树的同构(树的最小表示法)

    4337: BJOI2015 树的同构 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1023  Solved: 436[Submit][Status ...

  4. 【BZOJ4474】isomorphism(树的同构,哈希)

    题意:一个无向树的度数为 2的结点称为假结点,其它结点称为真结点.一个无向树的简化树其结点由原树的全体真结点组成,两个真结点之间有边当且仅当它们在原树中有边,或者在原树中有一条联结这两个结点的路,其中 ...

  5. BZOJ 4337: BJOI2015 树的同构 树hash

    4337: BJOI2015 树的同构 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4337 Description 树是一种很常见的数 ...

  6. BZOJ.4337.[BJOI2015]树的同构(树哈希)

    BZOJ 洛谷 \(Description\) 给定\(n\)棵无根树.对每棵树,输出与它同构的树的最小编号. \(n及每棵树的点数\leq 50\). \(Solution\) 对于一棵无根树,它的 ...

  7. [BJOI2015]树的同构 && 树哈希教程

    题目链接 有根树的哈希 离散数学中对树哈希的描述在这里.大家可以看看. 判断有根树是否同构,可以考虑将有根树编码.而编码过程中,要求保留树形态的特征,同时忽略子树顺序的不同.先来看一看这个方法: 不妨 ...

  8. 【BZOJ4337】树的同构(树同构,哈希)

    题意: 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如果能够把树T1T ...

  9. bzoj4337树的同构

    树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如果能够把树T1的所有点重 ...

随机推荐

  1. 【SpringCloud原理】万字剖析OpenFeign之FeignClient动态代理生成源码

    年前的时候我发布两篇关于nacos源码的文章,一篇是聊一聊nacos是如何进行服务注册的,另一篇是一文带你看懂nacos是如何整合springcloud -- 注册中心篇.今天就继续接着剖析Sprin ...

  2. 图文详解MapReduce工作机制

    job提交阶段 1.准备好待处理文本. 2.客户端submit()前,获取待处理数据的信息,然后根据参数配置,形成一个任务分配的规划. 3.客户端向Yarn请求创建MrAppMaster并提交切片等相 ...

  3. 『忘了再学』Shell基础 — 26、cut列提取命令

    目录 1.cut命令说明 2.cut命令练习 (1)cut命令基本用法 (2)cut命令选取多列 (3)按字符来进行提取 (4)按指定分隔符进行截取数据 3.cut命令分隔符说明 1.cut命令说明 ...

  4. 渗透测试之sql注入点查询

    一切教程在于安全防范,不在于攻击别人黑别人系统为目的 寻找sql注入点方法: 拿到网页后进行查找注入点: 1.通过单引号 ' ;    在 url 后面输入单引号进行回车(如果报错可能存在sql注入为 ...

  5. CabloyJS 基于 EggJS 实现的模块编译与发布

    背景 现在,EggJS被许多开发团队所采用.有的团队基于商业知识产权的考量,往往会提一个问题:是否可以把EggJS当中的代码编译打包,然后再把代码丑化? 模块编译的机制 EggJS为何不能便利的实现编 ...

  6. JAVA面向对象之封装和调用

    一   面向对象 面向对象的三大特性   1 封装:概念:封装是把过程和数据私有化,打包封存起来,对数据访问只能通过指定的方式.简单的可以理解为你把钱存到银行里,银行专员首先要给你开一个账户,之后你的 ...

  7. sort基本用法

    sort 选项 -u --去除重复行 -r --降序排列,默认是升序 -o --由于sort默认是把结果输出到标准输出,所以需要用重定向才能将结果写入文件,形如sort filename > n ...

  8. 使用EasyExcel导出图片及异常处理

    1.使用String类型导出   定义自己的Converter,不使用默认的StringImageConverter 如果图片路径为空或者图片路径是错误的,返回相应的内容 import java.io ...

  9. XXXX系统测试计划

    XXXX系统测试计划 目录 XXXX系统测试计划 目标 概述 项目背景 适用范围 组织形式 组织架构图 角色及职责 测试工作分工 团队协作 测试对象 应测试特性 不被测试特性 测试任务安排 系统测试任 ...

  10. Collection集合汇总

    Collectioin(java) Collection简介 打开帮助文档 java.utill //使用时需要导包 Interface Collection 集合层次结构中的根界面 . 集合表示一组 ...