TLE but corrct in most cases.

inline int Find(int x){
//be careful with the way used for finding your grand papa
for(; fa[x]; x = fa[x]);
return x;
}
inline int Merge(int x,int y){
if(!x) return y;
if(!y) return x;
if(val[x] > val[y] || (val[x] == val[y] && x > y)) x^=y^=x^=y;
son[x][1] = Merge(son[x][1], y);
fa[son[x][1]] = x;
if(dis[son[x][1]] > dis[son[x][0]]) swap(son[x][1], son[x][0]);
dis[x] = dis[son[x][1]] + 1;
return x;
} inline void Del(int x){
val[x] = -1;
fa[son[x][1]] = fa[son[x][0]] = 0;
Merge(son[x][1], son[x][0]);
}

AC with an undescriable magic.

inline int Find(int x){
return x == fa[x] ? x : fa[x] = Find(fa[x]);
} inline int Merge(int x,int y){
if(!x) return y;
if(!y) return x;
if(val[x] > val[y] || (val[x] == val[y] && x > y)) swap(x, y);
son[x][1] = Merge(son[x][1], y);
fa[son[x][0]] = fa[son[x][1]] = x;
if(dis[son[x][0]] < dis[son[x][1]]) swap(son[x][0], son[x][1]);
dis[x] = dis[son[x][1]] + 1;
return x;
}
int del[N];
inline void Del(int x){
del[x] = true;
fa[son[x][0]] = son[x][0];
fa[son[x][1]] = son[x][1];
fa[x] = Merge(son[x][0], son[x][1]);//QAQ
/*
Ah, it seems as father is not useful for himself anymore, he becomes a rope for his son to climb higher...
anyway, this program goes well with this sentence, so who care about the reason.
He who laughs last, laughs best...
*/
}

use struct

struct LeftTree{
int l,r,val,dis;
}t[N];
//int son[N][2],fa[N],val[N],dis[N];
int fa[N];
inline int Find(int x){
return x == fa[x] ? x : fa[x] = Find(fa[x]);
} inline int Merge(int x,int y){
if(!x) return y;
if(!y) return x;
if(t[x].val > t[y].val || (t[x].val == t[y].val && x > y)) swap(x, y);
t[x].r = Merge(t[x].r, y);
fa[t[x].l] = fa[t[x].r] = x;
if(t[t[x].l].dis < t[t[x].r].dis) swap(t[x].l, t[x].r);
t[x].dis = t[t[x].r].dis + 1;
return x;
} int del[N];
inline void Del(int x){
del[x] = true;
fa[t[x].l] = t[x].l;
fa[t[x].r] = t[x].r;
fa[x] = Merge(t[x].l, t[x].r);//QAQ
/*
Ah, it seems as father is not useful for himself anymore, he becomes a rope for his son to climb higher...
anyway, this program goes well with this sentence, so who care about the reason.
He who laughs last, laughs best...
*/
}

LuoguP3377 左偏树 (左偏树)的更多相关文章

  1. 图解数据结构树之AVL树

    AVL树(平衡二叉树): AVL树本质上是一颗二叉查找树,但是它又具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树.在AVL树中任何节点的两个子 ...

  2. 浅谈算法和数据结构: 十 平衡查找树之B树

    前面讲解了平衡查找树中的2-3树以及其实现红黑树.2-3树种,一个节点最多有2个key,而红黑树则使用染色的方式来标识这两个key. 维基百科对B树的定义为“在计算机科学中,B树(B-tree)是一种 ...

  3. B树、B+树的实现

    B树的定义 假设B树的度为t(t>=2),则B树满足如下要求:(参考算法导论) (1)  每个非根节点至少包含t-1个关键字,t个指向子节点的指针:至多包含2t-1个关键字,2t个指向子女的指针 ...

  4. B树、B-树、B+树、B*树

    B树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right) 2.所有结点存储一个关键字 3.非叶子节点的左指针指向小于其关键字的字数,右指针指向大于其关键字的字数: 如: B树的 ...

  5. 人人都是 DBA(VII)B 树和 B+ 树

    B 树(B-Tree)是为磁盘等辅助存取设备设计的一种平衡查找树,它实现了以 O(log n) 时间复杂度执行查找.顺序读取.插入和删除操作.由于 B 树和 B 树的变种在降低磁盘 I/O 操作次数方 ...

  6. 从B 树、B+ 树、B* 树谈到R 树

    从B 树.B+ 树.B* 树谈到R 树 作者:July.weedge.Frankie.编程艺术室出品. 说明:本文从B树开始谈起,然后论述B+树.B*树,最后谈到R 树.其中B树.B+树及B*树部分由 ...

  7. B树和B+树

    当数据量大时,我们如果用二叉树来存储的会导致树的高度太高,从而造成磁盘IO过于频繁,进而导致查询效率下降.因此采用B树来解决大数据存储的问题,很多数据库中都是采用B树或者B+树来进行存储的.其目的就是 ...

  8. 转 浅谈算法和数据结构: 十 平衡查找树之B树

    前面讲解了平衡查找树中的2-3树以及其实现红黑树.2-3树种,一个节点最多有2个key,而红黑树则使用染色的方式来标识这两个key. 维基百科对B树的定义为"在计算机科学中,B树(B-tre ...

  9. 二叉树学习笔记之B树、B+树、B*树

    动态查找树主要有二叉查找树(Binary Search Tree),平衡二叉查找树(Balanced Binary Search Tree), 红黑树 (Red-Black Tree ), 都是典型的 ...

随机推荐

  1. Docker容器:将带UI的程序直接转为Web应用,so easy

    摘要:使用Docker容器,将带UI的程序,直接转换为Web应用.很方便,跟大家分享一下. 本文分享自华为云社区<使用Docker容器,将带UI的程序,直接转为Web应用>,作者:tsjs ...

  2. Sentinel与OpenFeign 服务熔断那些事

    点赞再看,养成习惯,微信搜索[牧小农]关注我获取更多资讯,风里雨里,小农等你,很高兴能够成为你的朋友. 项目源码地址:公众号回复 sentinel,即可免费获取源码 在上一篇中,我们讲解了 Senti ...

  3. Linux版本的项目环境搭建

    项目环境docker及docker-compose文档 1.Linux环境介绍 centos7.6 16G以上内存空间(至少8G) 2.静态IP设置 1.找到配置文件 cd /etc/sysconfi ...

  4. go-zero 微服务实战系列(二、服务拆分)

    微服务概述 微服务架构是一种架构风格,它将一个大的系统构建为多个微服务的集合,这些微服务是围绕业务功能构建的,服务关注单一的业务功能,这些服务具有以下特点: 高度可维护和可测试 松散的耦合 可独立部署 ...

  5. 【物联网天线选择攻略】2.4GHz 频段增益天线模块设备选择

     天线模块设备(antenna)是一种能量变换器,它把传输线上传播的导行波,变换成在无界媒介中传播的电磁波,或者进行相反的变换.对于设计一个应用于射频系统中的小功率.短距离的2.4GHz无线收发设备, ...

  6. SpringBoot整合RabbitMQ实战附加死信交换机

    前言 使用springboot,实现以下功能,有两个队列1.2,往里面发送消息,如果处理失败发生异常,可以重试3次,重试3次均失败,那么就将消息发送到死信队列进行统一处理,例如记录数据库.报警等 环境 ...

  7. 【Linux系列】-Linux中用shell脚本从SFTP服务器下载文件

    银企直连的电子回单接口中,部分银行使用sftp服务作为文件服务器,通常只保留N天的文件内容,企业未在规定的时间范围下载文件之后就不能下载了,那么有一个自动下载的脚本岂不美滋滋. Linux安装SFTP ...

  8. 一文理解OpenStack网络

    摘要:如果你能理解OpenStack的网络,那么对于其他云平台的网络,应该也可以通过分析后理解掌握了. 本文分享自华为云社区<<跟唐老师学习云网络> - OpenStack网络实现& ...

  9. hadoop集群搭建——单节点(伪分布式)

    1. 准备工作: 前提:需要电脑安装VM,且VM上安装一个Linux系统 注意:本人是在学习完尚学堂视频后,结合自己的理解,在这里做的总结.学习的视频是:大数据. 为了区分是在哪一台机器做的操作,eg ...

  10. 用 PyQt5 快速构建一个简单的 GUI 应用

    1. 介绍 Python GUI 常用的 3 种框架是:Tkinter.wxpython.PyQt5 PyQt5 基于 Qt,是 Python 和 Qt 的结合体,可以用 Python 语言编写跨平台 ...