引入M,其中M是一个充分大的正数。由此,目标函数也改变为zM.

如此构造的线性规划问题我们记作LPM,称之为辅助线性规划问题,也即在原来的线性规划问题的基础上,改造了其等式约束条件,然后有对目标函数施加了惩罚项,Mx4,Mx5。

因为M是充分大的正数,所以即便x4,x5很小,只要x4,x5不等于0,这个惩罚项也也会很大的;一旦大M趋于正无穷,那么Mx4,Mx5一块就是正无穷了;而前面的各变量及其系数

的组合也是有限的量;根据一个有限的量加上一个无穷大量结果是无穷大量定理;那么目标函数就是趋于无穷大量,怎么还会取得最小值呢?∴大M叫做惩罚项是有道理的,而且

在理想的状态下,一旦x4,x5取值为零,那么目标函数中就再也没有惩罚项了,目标函数也就有zM还原为z了,同时约束条件x4,x5也就消失了,因为二者此时为零;

这样也就实现了有LPM向原线性规划问题的还原。所以大M法,首先引入大M惩罚项,对人为引入的人工变量施加惩罚,最佳的状态就是把引入的人工变量都惩罚为0,这样不仅等式约束条件没被破坏,目标函数也还原为原来的目标函数了。如果做不到这一步,就说明有些约束条件原来就不可能相等。

我们构造辅助线性规划问题后可看到已经有x4,x5系数组成的单位矩阵了,我们把它取作初始可行基。

进而可以写出典式的等价形式(把基变量和目标函数都用非基变量表示)如下:

进而做出单纯形表:

有了单纯形表,进一步讨论三种情形。

情形1:是否全部的检验数都<=0;很显然此题不是;1肯定是>0的,另外M是充分大的正数所以3M+3,3M+5也都是>=0的。

情形2:正的检验数上面没有正的,才是第二种情况;此题不符合;

显然是第三种情况了,选定枢轴列->元,然后转轴。

上图得到了辅助线性规划问题的最优解和最优值,但须注意,在辅助线性规划问题中,我们引入了两个人工变量的值,x4,x5,

也可发现在LPM的最优解中两个变量都已经为0了。也即是说,辅助线性规划的人工变量都已经被充分大的大M构造的惩罚项惩罚为0了,也就是说又还原为原来初始的线性规划问题了,所以据此我们就可以得到LP,即原来线性规划问题的最优解和最优值。。。

可看到上图中有一个检验数是正的,其所在列上面的值都是<=0,所以是第二种情形,所以LPM无下届。

而之前引入的人工变量x5对应的取值为1,并没有被惩罚为0;另一个非基变量x6作为非基变量已经被惩罚为0了;

也即,因x5=1,x6=0,故原线性规划问题不可行。

练习:

运筹学笔记12 大M法的更多相关文章

  1. SQL反模式学习笔记12 存储图片或其他多媒体大文件

    目标:存储图片或其他多媒体大文件 反模式:图片存储在数据库外的文件系统中,数据库表中存储文件的对应的路径和名称. 缺点:     1.文件不支持Delete操作.使用SQL语句删除一条记录时,对应的文 ...

  2. 大M法(Big M Method)

    前面一篇讲的单纯形方法的实现,但程序输入的必须是已经有初始基本可行解的单纯形表. 但实际问题中很少有现成的基本可行解,比如以下这个问题: min f(x) = –3x1 +x2 + x3 s.t. x ...

  3. 机器学习实战 - 读书笔记(12) - 使用FP-growth算法来高效发现频繁项集

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第12章 - 使用FP-growth算法来高效发现频繁项集. 基本概念 FP-growt ...

  4. JAVA自学笔记12

    JAVA自学笔记12 1.Scanner 1)JDK5后用于获取用户的键盘输入 2)构造方法:public Scanner(InputStream source) 3)System.in 标准的输入流 ...

  5. 大津法---OTSU算法

    简介: 大津法(OTSU)是一种确定图像二值化分割阈值的算法,由日本学者大津于1979年提出.从大津法的原理上来讲,该方法又称作最大类间方差法,因为按照大津法求得的阈值进行图像二值化分割后,前景与背景 ...

  6. 自适应阈值分割—大津法(OTSU算法)C++实现

    大津法是一种图像灰度自适应的阈值分割算法,是1979年由日本学者大津提出,并由他的名字命名的.大津法按照图像上灰度值的分布,将图像分成背景和前景两部分看待,前景就是我们要按照阈值分割出来的部分.背景和 ...

  7. matlab学习笔记12单元数组和元胞数组 cell,celldisp,iscell,isa,deal,cellfun,num2cell,size

    一起来学matlab-matlab学习笔记12 12_1 单元数组和元胞数组 cell array --cell,celldisp,iscell,isa,deal,cellfun,num2cell,s ...

  8. Ext.Net学习笔记12:Ext.Net GridPanel Filter用法

    Ext.Net学习笔记12:Ext.Net GridPanel Filter用法 Ext.Net GridPanel的用法在上一篇中已经介绍过,这篇笔记讲介绍Filter的用法. Filter是用来过 ...

  9. 自适应阈值二值化之最大类间方差法(大津法,OTSU)

    最大类间方差法是由日本学者大津(Nobuyuki Otsu)于1979年提出的,是一种自适应的阈值确定的方法,又叫大津法,简称OTSU.它是按图像的灰度特性,将图像分成背景和目标2部分.背景和目标之间 ...

随机推荐

  1. JavaScript 中 empty、remove 和 detach的区别

    内容 empty.remove 和 detach的区别 jQuery 操作 DOM 之删除节点 方法名 元素所绑定的事件及数据是否也被移除 作用 $(selector).empty() 是 从被选元素 ...

  2. Springcloud报错:java.lang.IllegalStateException: Service id not legal hostname (/a-service)

    今天在做springcloud链路追踪的时候,报错java.lang.IllegalStateException: Service id not legal hostname (/a-service) ...

  3. Masa Blazor in Blazor Day

    2022年第一场Blazor中文社区的开发者分享活动,我们的团队也全程参与其中,在议程中,也分享了我们团队的Blazor 管理后台模板,针对于Blazor,先科普一波,避免有些朋友不了解,Blazor ...

  4. Springboot集成cache的key生成策略

    代码接上文:深度理解springboot集成redis缓存之源码解析 ## 1.使用SpEL表达式 @Cacheable(cacheNames = "emp",key = &quo ...

  5. netty系列之:java中的base64编码器

    简介 什么是Base64编码呢?在回答这个问题之前,我们需要了解一下计算机中文件的分类,对于计算机来说文件可以分为两类,一类是文本文件,一类是二进制文件. 对于二进制文件来说,其内容是用二进制来表示的 ...

  6. uniapp-h5之canvans上文本的展示

    ctx.font = 'bold 14px arial';ctx.fillStyle = '#e9e6e6';ctx.fillText('长按图片保存到相册', (this.pwidth -250/e ...

  7. partOneJava学习卷土重来-----第一次测试题目介绍

    石家庄铁道大学2021年秋季   2020 级课堂测试试卷(一)(15分) 课程名称: JAVA语言程序设计  任课教师: 王建民        考试时间: 150 分钟 一.考试要求: 1.按照测试 ...

  8. 『现学现忘』Git基础 — 8、Git创建本地版本库

    目录 1.Git版本库介绍 2.创建本地版本库 场景一:创建一个空的本地版本库. 场景二:项目中已存在文件时,创建该项目的本地版本库. 场景三:在GitHub网站上创建仓库,克隆到本地. 1.Git版 ...

  9. 2021.11.03 P6175 无向图的最小环问题

    2021.11.03 P6175 无向图的最小环问题 P6175 无向图的最小环问题 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 给定一张无向图,求图中一个至少包含 33 ...

  10. CDN绕过

    信息收集_CDN绕过 什么是CDN?为什么要绕过? ​ CDN全称是内容分发网络(content delivery network).其目的是让用户能够更快速的得到请求的数据. ​ 网上找了一张图片, ...