题目链接

题目大意:

对于集合 \(\{1,2,\dots,n\}\) ,求它的子集族中,有多少个满足:

  • 任意两个子集互不相同;
  • \(1,2,\dots,n\) 都在其中至少出现了 \(2\) 次。

答案对 \(M\) 取模。

看到这种东西就要想到容斥。

设 \(F_i\) 表示至少有 \(i\) 个数字只出现了一次。

更具体的,就是 \(F_i\) 个数只出现一次,其他的数出现次数随便。

由容斥我们可以知道:

\[Ans = \sum_{i=0}^n(-1)^iF_i
\]

我们来考虑这时 \(n-i\) 个随便的部分构成的方案数。

首先,这 \(n - i\) 个数随便定是否只出现了一次,可以看出方案数是 \(2^{n-i}\) 。

然后对于每一个得出的情况,我们都可以选或不选,所以就是 \(2^{2^{n-i}}\) 。

再来看从 \(n\) 个数选出 \(i\) 个一定出现一次的方案数 \(C_n^i\) 很简单。

如果我们设 \(f_i\) 表示恰好有 \(i\) 个数只出现了一次,那么可以得到:

\[F_i=f_i\times2^{2^{n-i}}\times C_n^i
\]

现在着手考虑 \(f_i\) 是怎么得到的。

我们设 \(g_{i,j}\) 表示 \(i\) 个只出现一次的数放到 \(j\) 个集合的方案数。

  • 当此时第 \(j\) 个集合没有不合法的数,此时 \(i\) 只能填在此处 \(\rightarrow g_{i-1,j-1}\)
  • 意味着 \(j\) 个集合里面都有不合法的数字了,这样的话第 \(i\) 个不合法的数可以选择加入到 \(j\) 个集合中任意一个,也可以不加入任何集合。(因为不是强制的) \(\rightarrow (j+1)g_{i-1,j}\)

非常显然的 \(g_{i,j}\) 自然是这两种情况的和。

\[g_{i,j}=g_{i-1, j-1}+(j+1)g_{i-1,j}
\]

最后我们枚举有几个集合里有非法的元素就可以了。

注意:除了不合法的数字一个集合中还可以有其他的元素,及 \((2^{n-i})^j\)

\[f_i=\sum_{j=0}^ig_{i,j}\times (2^{n-i})^j\\
Ans = \sum_{i=0}^n(-1)^i\times\sum_{j=0}^ig_{i,j}\times (2^{n-i})^j\times2^{2^{n-i}}\times C_n^i
\]

呃呃呃,这个 \(Ans\) 的式子可能有一点点乱。。。

Code

#include <cstdio>
#include <iostream>
#include <algorithm> #define file(a) freopen(a".in", "r", stdin), freopen(a".out", "w", stdout) #define Enter putchar('\n')
#define quad putchar(' ') #define int long long
const int N = 3005; int n, mod, fac[N], g[N][N], ans; inline int power(int a, int n, int mod);
inline int C(int n, int m); signed main(void) {
std::cin >> n >> mod;
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i % mod;
for (int i = 0; i <= n; i++) {
g[i][0] = 1;
for (int j = 1; j <= i; j++)
g[i][j] = (g[i - 1][j - 1] + (j + 1) * g[i - 1][j] % mod) % mod;
}
for (int i = 0, lala; i <= n; i++) {
int two = power(2, n - i, mod - 1);
two = power(2, two, mod);
int num = power(2, n - i, mod), F = 0, mul = 1;
for (int j = 0; j <= i; j++) {
F = (F + g[i][j] * mul) % mod;
mul = mul * num % mod;
}
if (i % 2 == 1) lala = mod - C(n, i);
else lala = C(n, i);
ans = (ans + F * lala % mod * two % mod) % mod;
ans = (ans % mod + mod) % mod;
}
std::cout << ans << std::endl;
return 0;
} inline int power(int a, int n, int mod) {
int ret = 1;
while (n) {
if (n & 1) ret = ret * a % mod;
a = a * a % mod;
n /= 2;
}
return ret;
}
inline int C(int n, int m) {
if (n < m) return 0;
int ret = fac[n];
ret = ret * power(fac[m], mod - 2, mod) % mod;
ret = ret * power(fac[n - m], mod - 2, mod) % mod;
return ret;
}

[ARC096C] Everything on It 补题记录的更多相关文章

  1. 【补题记录】ZJU-ICPC Summer Training 2020 部分补题记录

    补题地址:https://zjusummer.contest.codeforces.com/ Contents ZJU-ICPC Summer 2020 Contest 1 by Group A Pr ...

  2. 【JOISC 2020 补题记录】

    目录 Day 1 Building 4 Hamburg Steak Sweeping Day 2 Chameleon's Love Making Friends on Joitter is Fun R ...

  3. 【cf补题记录】Codeforces Round #608 (Div. 2)

    比赛传送门 再次改下写博客的格式,以锻炼自己码字能力 A. Suits 题意:有四种材料,第一套西装需要 \(a\).\(d\) 各一件,卖 \(e\) 块:第二套西装需要 \(b\).\(c\).\ ...

  4. 【cf补题记录】Codeforces Round #607 (Div. 2)

    比赛传送门 这里推荐一位dalao的博客-- https://www.cnblogs.com/KisekiPurin2019/ A:字符串 B:贪心 A // https://codeforces.c ...

  5. Codeforces 1214 F G H 补题记录

    翻开以前打的 #583,水平不够场上只过了五题.最近来补一下题,来记录我sb的调试过程. 估计我这个水平现场也过不了,因为前面的题已经zz调了好久-- F:就是给你环上一些点,两两配对求距离最小值. ...

  6. Yahoo Programming Contest 2019 补题记录(DEF)

    D - Ears 题目链接:D - Ears 大意:你在一个\(0-L\)的数轴上行走,从整数格出发,在整数格结束,可以在整数格转弯.每当你经过坐标为\(i-0.5\)的位置时(\(i\)是整数),在 ...

  7. Codeforces 补题记录

    首先总结一下前段时间遇到过的一些有意思的题. Round #474 (Div. 1 + Div. 2, combined)   Problem G 其实关键就是n这个数在排列中的位置. 这样对于一个排 ...

  8. 【补题记录】NOIp-提高/CSP-S 刷题记录

    Intro 众所周知原题没写过是很吃亏的,突然发现自己许多联赛题未补,故开此坑. 在基本补完前会持续更新,希望在 NOIp2020 前填完. 虽然是"联赛题",但不少题目还是富有思 ...

  9. ZJUT11 多校赛补题记录

    牛客第一场 (通过)Integration (https://ac.nowcoder.com/acm/contest/881/B) (未补)Euclidean Distance (https://ac ...

随机推荐

  1. 研讨会回放视频:如何提升Jenkins能力,使其成为真正的DevOps平台

    "如何实现集中管理.灵活高效的CI/CD"在线研讨会精彩分享 演讲嘉宾:杨海涛 在2022年3月29日举办的"如何实现集中管理.灵活高效的CI/CD"在线研讨会 ...

  2. 浅尝Spring注解开发_AOP原理及完整过程分析(源码)

    浅尝Spring注解开发_AOP原理及完整过程分析(源码) 浅尝Spring注解开发,基于Spring 4.3.12 分析AOP执行过程及源码,包含AOP注解使用.AOP原理.分析Annotation ...

  3. victoriaMetrics无法获取抓取target的问题

    victoriaMetrics无法获取抓取target的问题 问题描述 最近在新环境中部署了一个服务,其暴露的指标路径为:10299/metrics,配置文件如下(名称字段有修改): apiVersi ...

  4. Ansible的参数介绍

    安装完成ansible后查看ansible的参数:ansible -h ansible 命令格式:Usage: ansible <host-pattern> [options] ansib ...

  5. 记录一次用宝塔部署微信小程序Node.js后端接口代码的详细过程

    一直忙着写毕设,上一次写博客还是元旦,大半年过去了.... 后面会不断分享各种新项目的源码与技术.欢迎关注一起学习哈! 记录一次部署微信小程序Node.js后端接口代码的详细过程,使用宝塔来部署. 我 ...

  6. go 语言开发1 环境配置和语言基础

    Go 语言环境配置 windows 环境变量: 设置 GOROOT (安装路径),GOPATH(工程目录) Path 中加入 %GOROOT%/bin 和 %GOPATH%/bin mac 环境变量: ...

  7. PTA 7-4 堆栈操作合法性 (20 分)

    假设以S和X分别表示入栈和出栈操作.如果根据一个仅由S和X构成的序列,对一个空堆栈进行操作,相应操作均可行(如没有出现删除时栈空)且最后状态也是栈空,则称该序列是合法的堆栈操作序列.请编写程序,输入S ...

  8. C# WPF后台动态添加控件(经典)

    概述 在Winform中从后台添加控件相对比较容易,但是在WPF中,我们知道界面是通过XAML编写的,如何把后台写好的控件动态添加到前台呢?本节举例介绍这个问题. 这里要用到UniformGrid布局 ...

  9. Spring Boot 配置 HikariCP

    HikariCP 是一个可靠的.高性能的 JDBC 连接池 本来用的 alibaba/druid,但实际并没有怎么用其内置的监控网页,然后多方调查,决定弃用 druid,替换为 HikariCP Sp ...

  10. 859. Buddy Strings - LeetCode

    Question 859. Buddy Strings Solution 题目大意: 两个字符串,其中一个字符串任意两个字符互换后与另一个字符串相等,只能互换一次 思路: diff 记录不同字符数 两 ...