LGP3702题解
很容易想到容斥,计算不包含质数的方案数和总方案数。
设 \(f[n][i]\) 表示长度为 \(n\) 的序列,每个元素的和对 \(p\) 取模的结果。
容易有 \(f[n][i]=\sum_{j=0}^pf[n-1][i-j\bmod p]\times g[j]\),\(g[j]\) 代表选出的数(非质数或 \([1,m]\) 的整数)对 \(p\) 取模为 \(j\) 的数的数量。
容易发现这是一个循环卷积,容易做到 \(O(p^2\log n)\)。
我们知道 \(DFT\) 做的也是循环卷积,所以我们把 \(w_n^{0\sim n-1}\) 拉出来,将 \(g\) 看做多项式,带入这些点值后快速幂,最后 \(IDFT\) 可以做到 \(O(p^2+p\log n)\)。
但是 \(20170408\) 不是质数 是省选的日期,进行质因数分解后可能系数没有下标,所以写了个 \(O(p^2\log n)\) 就溜了(
#include<cstdio>
typedef unsigned ui;
const ui M=105,N=2e7+5,mod=20170408;
ui n,m,p,g[M];bool zhi[N];
inline void times(ui*f,ui*g){
static ui sav[M<<1];
for(ui i=0;i<p;++i)for(ui j=0;j<p;++j)sav[i+j]=(sav[i+j]+1ull*f[i]*g[j])%mod;
for(ui i=0;i<p;++i)f[i]=(sav[i]+sav[i+p])%mod,sav[i]=sav[i+p]=0;
}
inline void sieve(const ui&M){
for(ui i=2;i*i<=M;++i)if(!zhi[i])for(ui j=i*i;j<=M;j+=i)zhi[j]=true;zhi[1]=true;
}
inline ui pow(ui*g,ui n){
static ui f[M];
for(ui i=0;i<p;++i)f[i]=0;f[0]=1;
for(;n;n>>=1,times(g,g))if(n&1)times(f,g);
return f[0];
}
signed main(){
ui sum1,sum2;
scanf("%u%u%u",&n,&m,&p);sieve(m);
const ui&x=m%p,&y=m/p;
for(ui i=0;i<p;++i)g[i]=1<=i&&i<=x?y+1:y;
sum1=pow(g,n);
for(ui i=0;i<p;++i)g[i]=0;
for(ui j=1,i=1;i<=m;++i){
if(zhi[i])++g[j];if(++j==p)j=0;
}
sum2=pow(g,n);
printf("%u",(mod+sum1-sum2)%mod);
}
LGP3702题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- 自定义CALayer
1.如何自定义Layer. 自定义CALayer的方式创建UIView的方式非常相似. CALayer *layer = [CALayer layer]; layer.fr ...
- windows server2012搭建邮箱服务器+客户端界面(hmailserver+afterlogic)+批量创建邮箱
1.简介 由于需要较多邮箱,如果去注册需要很多的手机号码去验证,一个人不可能买一堆的手机号,所以自己搭建一个邮箱服务器可以大批量的创建自己的邮箱账号和收发邮件. 2.安装部署hmailserver 下 ...
- 《PHP程序员面试笔试宝典》——如何回答技术性的问题?
如何巧妙地回答面试官的问题? 本文摘自<PHP程序员面试笔试宝典> 程序员面试中,面试官会经常询问一些技术性的问题,有的问题可能比较简单,都是历年的面试.笔试真题,求职者在平时的复习中会经 ...
- Intellij IDEA出现java.lang.ClassNotFoundException: com.mysql.jdbc.Driver处理办法
菜单-->File-->project structure-->Modules-->Dependencies-->添加MySQL的驱动包:mysql-connector- ...
- php异步:在php中使用fsockopen curl实现类似异步处理的功能方法
PHP从主流来看,是一门面向过程的语言,它的最大缺点就是无法实现多线程管理,其程序的执行都是从头到尾,按照逻辑一路执行下来,不可能出现分支,这一点是限制php在主流程序语言中往更高级的语言发展的原因之 ...
- SopringBoot2.x整合Redis
1.导入相关依赖 <!-- redis 依赖 --> <dependency> <groupId>org.springframework.boot</grou ...
- CUDA01 - 硬件架构、warp调度、指令流水线和cuda并发流
这一部分打算从头记录一下CUDA的编程方法和一些物理架构上的特点:从硬件入手,写一下包括线程束的划分.流水线的调度等等微结构的问题,以及这些物理设备是如何与软件对应的.下一部分会写一下cuda中的几种 ...
- [题解]UVA10986 Sending email
链接:http://vjudge.net/problem/viewProblem.action?id=24941 描述:n个点,m条边的无向图,寻找从S到T的最短路. 思路:基础的单源点最短路 用Di ...
- 想上BI系统,原来的Excel优秀模板都丢弃吗?
我们公司之前一直都用Excel来存储数据,展示数据,Excel本身拥有强大的公式可以帮助我们的数据进行再加工计算,Excel的图形我们可以可以直接拿来展示数据,Excel本身还有数据透视表帮助我们的分 ...
- python语法:注释
Python语法:注释 python语言中的注释是来帮助程序员理解并读懂代码内容的文字.当然,注释不仅在python语言中是这个作用,在其他语言中也几乎一样. python注释的生成方式 所有演示 ...