题意

设 \(a\) 的价值为 \(a \times cnt_a\)(\(cnt_a\) 为 \(a\) 在区间中出现的次数),求区间种某种元素,使得这种元素的价值最大。

因为设计出现元素的次数,所以首先考虑莫队。

由于 Add 操作很好写,Del 操作不会写,所以我们考虑一种专门处理 Del 不容易处理的莫队:回滚莫队。

回滚莫队将询问区间分为两部分。设 \([L,R]\) 的左端点 \(L\) 所在块的右端点为 \(p\),则将区间分为 \([L,p]\) 和 \([p,R]\)。

我们发现对于左端点所在块不变的情况,右端点 $ R $ 是单调递增的,可以直接 Add;而左端点的数量级在 \(O(\sqrt n)\) 级别,我们可以先只计算右边的区间的贡献,然后向左 Add,最后撤回向左的 Add。

因为向左的操作只有 \(O(\sqrt n)\) 个,所以撤回操作的复杂度也是 \(O(\sqrt n)\) 的。

不过这道题有一点儿细节,具体见代码。

#include<algorithm>
#include<cstdio>
#include<cmath>
const int M=1e5+5;
int n,m,p,a[M],CB[M],lsh[M];long long cur,tmp,ans[M];
int len,v[M],mdf[M];bool vis[M];
inline long long max(const long long&a,const long long&b){
return a>b?a:b;
}
struct Query{
int L,R,p,id;
inline bool operator<(const Query&it)const{
return p==it.p?R<it.R:L<it.L;
}
}q[M];
inline void AddR(const int&val){
cur=max(cur,1ll*++CB[val]*lsh[val]);
}
inline void AddL(const int&val){
if(!vis[val]){
++len;mdf[len]=val;v[len]=CB[val];vis[val]=true;
}
tmp=max(tmp,1ll*++CB[val]*lsh[val]);
}
signed main(){
register int i,j,id;
scanf("%d%d",&n,&m);p=ceil(n/sqrt(2.0*m/3));
for(i=1;i<=n;++i)scanf("%d",a+i),lsh[++len]=a[i];
std::sort(lsh+1,lsh+len+1);len=std::unique(lsh+1,lsh+len+1)-lsh-1;
for(i=1;i<=n;++i)a[i]=std::lower_bound(lsh+1,lsh+len+1,a[i])-lsh;len=0;
for(i=1;i<=m;++i){
scanf("%d%d",&q[i].L,&q[i].R);
q[i].p=(q[i].L-1)/p+1;q[i].id=i;
}
std::sort(q+1,q+m+1);
for(i=1;i<=m;++i){
const int&QL=q[i].L,&QR=q[i].R;
if(i==1||q[i].p!=q[i-1].p){
for(j=1;j<=n;++j)CB[j]=0;
id=q[i].p*p;cur=0;
}
if((QL-1)/p==(QR-1)/p){
tmp=0;
for(j=QL;j<=QR;++j)AddL(a[j]);
}
else{
while(id<QR)AddR(a[++id]);tmp=cur;
for(j=QL;j<=q[i].p*p;++j)AddL(a[j]);
}
for(j=1;j<=len;++j)CB[mdf[j]]=v[j],vis[mdf[j]]=false;
ans[q[i].id]=tmp;len=0;
}
for(i=1;i<=m;++i)printf("%lld\n",ans[i]);
}

AT1219题解的更多相关文章

  1. 题解 AT1219 【歴史の研究】

    莫队 简单分析:题面含有IOI(惊),可知此题是IOI(数字三角形)难度(逃). 思路:回滚莫队 当然很多人都是抱着学回滚莫队的目标来看这道题的,所以这里介绍一下回滚莫队. 1.按莫队的思路讲询问排序 ...

  2. bzoj4241/AT1219 历史研究(回滚莫队)

    bzoj4241/AT1219 历史研究(回滚莫队) bzoj它爆炸了. luogu 题解时间 我怎么又在做水题. 就是区间带乘数权众数. 经典回滚莫队,一般对于延长区间简单而缩短区间难的莫队题可以考 ...

  3. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  4. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  5. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  6. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  7. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  8. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  9. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

随机推荐

  1. html5 新增标签和特性

    文档类型设定 document HTML: XHTML: HTML5 字符设定 <meta http-equiv="charset" content="utf-8& ...

  2. JabRef

    # JabRef 下载 https://www.fosshub.com/JabRef.html # JabRef 安装 自己更改下目录直接安装接可以了 # 新建自己的库, 然后点击保存就可以了. # ...

  3. python使用泛型

    所谓的泛型, 就是将数据类型作为参数进行传递, 即在我们用的时候确定数据类型, 这是一种在面向对象语言中经常使用的特性 一般类使用 以SQLAlchemy举例 比如: 我们统一写个将数据保存到数据库的 ...

  4. OpenHarmony移植案例与原理:startup子系统之syspara_lite系统属性部件

    摘要:本文介绍下移植开发板时如何适配系统属性部件syspara_lite,并介绍下相关的运行机制原理. 本文分享自华为云社区<openharmony移植案例与原理 - startup子系统之sy ...

  5. php base64格式的图片字符串和图片文件相互转换的代码

    在移动端上传图片的时候通常会将图片转换成base64格式的字符串提交,所以此时需要使用服务器端的程序进行转换成二进制的数据.如下PHP代码实现了图片文件和base64格式的图片字符串相互转换的方法,同 ...

  6. CentOS8 固定IP无法访问外网问题解决(ping: www.hao123.com: Name or service not known)

    CentOS8虚拟机用了一段时间后,需要安装telnet-server服务,却无法正常安装.之前安装ftp服务是没有问题的,安装问题如下: 错误提示,无法下载相关元数据:网上也是0.0B/s.那么可能 ...

  7. Graph Based SLAM 基本原理

    作者 | Alex 01 引言 SLAM 基本框架大致分为两大类:基于概率的方法如 EKF, UKF, particle filters 和基于图的方法 .基于图的方法本质上是种优化方法,一个以最小化 ...

  8. ServiceStack.Redis的源码分析(连接与连接池)

    前几天在生产环境上redis创建连接方面的故障,分析过程中对ServiceStack.Redis的连接创建和连接池机制有了进一步了解.问题分析结束后,通过此文系统的将学习到的知识点整理出来. 从连接池 ...

  9. Node 模块规范鏖战:难以相容的 CJS 与 ESM

    自 13.2.0 版本开始,Node.js 在保留了 CommonJS(CJS)语法的前提下,新增了对 ES Modules(ESM)语法的支持. 天下苦 CJS 久已,Node 逐渐拥抱新标准的规划 ...

  10. Python "爬虫"出发前的装备之一正则表达式

    1. 正则表达式 正则表达式是一种模板表达式语言 通过定义规则去匹配.查找.替换.分割一个长字符串中特定的子字符信息. 如在一篇文章中查找出所有合法的电子邮箱地址,则可以先用正则表达式定义一个电子邮箱 ...