题意

设 \(a\) 的价值为 \(a \times cnt_a\)(\(cnt_a\) 为 \(a\) 在区间中出现的次数),求区间种某种元素,使得这种元素的价值最大。

因为设计出现元素的次数,所以首先考虑莫队。

由于 Add 操作很好写,Del 操作不会写,所以我们考虑一种专门处理 Del 不容易处理的莫队:回滚莫队。

回滚莫队将询问区间分为两部分。设 \([L,R]\) 的左端点 \(L\) 所在块的右端点为 \(p\),则将区间分为 \([L,p]\) 和 \([p,R]\)。

我们发现对于左端点所在块不变的情况,右端点 $ R $ 是单调递增的,可以直接 Add;而左端点的数量级在 \(O(\sqrt n)\) 级别,我们可以先只计算右边的区间的贡献,然后向左 Add,最后撤回向左的 Add。

因为向左的操作只有 \(O(\sqrt n)\) 个,所以撤回操作的复杂度也是 \(O(\sqrt n)\) 的。

不过这道题有一点儿细节,具体见代码。

#include<algorithm>
#include<cstdio>
#include<cmath>
const int M=1e5+5;
int n,m,p,a[M],CB[M],lsh[M];long long cur,tmp,ans[M];
int len,v[M],mdf[M];bool vis[M];
inline long long max(const long long&a,const long long&b){
return a>b?a:b;
}
struct Query{
int L,R,p,id;
inline bool operator<(const Query&it)const{
return p==it.p?R<it.R:L<it.L;
}
}q[M];
inline void AddR(const int&val){
cur=max(cur,1ll*++CB[val]*lsh[val]);
}
inline void AddL(const int&val){
if(!vis[val]){
++len;mdf[len]=val;v[len]=CB[val];vis[val]=true;
}
tmp=max(tmp,1ll*++CB[val]*lsh[val]);
}
signed main(){
register int i,j,id;
scanf("%d%d",&n,&m);p=ceil(n/sqrt(2.0*m/3));
for(i=1;i<=n;++i)scanf("%d",a+i),lsh[++len]=a[i];
std::sort(lsh+1,lsh+len+1);len=std::unique(lsh+1,lsh+len+1)-lsh-1;
for(i=1;i<=n;++i)a[i]=std::lower_bound(lsh+1,lsh+len+1,a[i])-lsh;len=0;
for(i=1;i<=m;++i){
scanf("%d%d",&q[i].L,&q[i].R);
q[i].p=(q[i].L-1)/p+1;q[i].id=i;
}
std::sort(q+1,q+m+1);
for(i=1;i<=m;++i){
const int&QL=q[i].L,&QR=q[i].R;
if(i==1||q[i].p!=q[i-1].p){
for(j=1;j<=n;++j)CB[j]=0;
id=q[i].p*p;cur=0;
}
if((QL-1)/p==(QR-1)/p){
tmp=0;
for(j=QL;j<=QR;++j)AddL(a[j]);
}
else{
while(id<QR)AddR(a[++id]);tmp=cur;
for(j=QL;j<=q[i].p*p;++j)AddL(a[j]);
}
for(j=1;j<=len;++j)CB[mdf[j]]=v[j],vis[mdf[j]]=false;
ans[q[i].id]=tmp;len=0;
}
for(i=1;i<=m;++i)printf("%lld\n",ans[i]);
}

AT1219题解的更多相关文章

  1. 题解 AT1219 【歴史の研究】

    莫队 简单分析:题面含有IOI(惊),可知此题是IOI(数字三角形)难度(逃). 思路:回滚莫队 当然很多人都是抱着学回滚莫队的目标来看这道题的,所以这里介绍一下回滚莫队. 1.按莫队的思路讲询问排序 ...

  2. bzoj4241/AT1219 历史研究(回滚莫队)

    bzoj4241/AT1219 历史研究(回滚莫队) bzoj它爆炸了. luogu 题解时间 我怎么又在做水题. 就是区间带乘数权众数. 经典回滚莫队,一般对于延长区间简单而缩短区间难的莫队题可以考 ...

  3. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  4. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  5. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  6. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  7. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  8. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  9. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

随机推荐

  1. NSMutableArray基本概念

    1.NSMutableArray介绍 什么是NSMutableArray NSMutableArray是NSArray的子类 NSArray是不可变的,一旦初始化完毕后,它里面的内容就永远是固定的, ...

  2. logback1.3.x配置详解与实践

    前提 当前(2022-02前后)日志框架logback的最新版本1.3.0已经更新到1.3.0-alpha14版本,此版本为非stable版本,相对于最新稳定版1.2.10来说,虽然slf4j-api ...

  3. 基于Java的简单银行管理系统(MVC设计模式)

    项目导航 功能展示 项目描述 项目结构 `data` `service` `utils` `view ` 欠缺与总结 源码下载 功能展示 本系统基于命令台窗口,暂未与图形页面结合.话不多说,先上效果图 ...

  4. Solution -「Tenka1 2019 D」Three Colors

    \(\mathcal{Description}\)   Link.   给定 \(\{a_n\}\),把每个元素划分入可重集 \(R,G,B\) 中的恰好一个,求满足 \(\sum R,\sum G, ...

  5. 微服务6:通信之网关 Ready

    ★微服务系列 微服务1:微服务及其演进史 微服务2:微服务全景架构 微服务3:微服务拆分策略 微服务4:服务注册与发现 微服务5:服务注册与发现(实践篇) 微服务6:通信之网关 1 概述 回顾下前面几 ...

  6. Linux性能优化之磁盘I/O性能指标

    讨论指标之前,得先解决两个概念:文件系统和磁盘I/O栈. 文件系统是什么?文件系统是在磁盘的基础上,提供了一个用来管理文件的树状结构.简言之,文件系统是树状结构,一种数据结构~逻辑上的概念.磁盘大家都 ...

  7. DBLink的使用(从A库使用SQL查询B库的数据)

    DBLink的使用 情景:今天我需要从A数据库查询B数据库的数据,进行一些数据比对和联合查询的操作. 所以用到的DBLink,在此记录一下使用流程,希望能够帮助下一个小白,一步到位的解决问题. 一句话 ...

  8. Node.JS学习——学习笔记

    Node.JS--学习笔记 2020年02月23日11:52:01 我打算自学NodeJS-通过阅读NodeJS官网来完成. https://nodejs.org/dist/latest-v13.x/ ...

  9. mac 调出任何来源方法

    如果没有这个选项的话(macOS Sierra 10.12),打开终端,执行sudo spctl --master-disable即可 这可以很好的解决掉 部分软件 显示已损坏的办法

  10. Mybatis获取自增主键的两种方式

    <insert id="saveOne" parameterType="com.buwei.entity.User" > INSERT into u ...