本文首发于 Nebula Graph Community 公众号

解决思路

解决 K8s 部署 Nebula Graph 集群后连接不上集群问题最方便的方法是将 nebula-algorithm / nebula-spark 运行在与 nebula-operator 相同的网络命名空间里,将 show hosts meta 的 MetaD 域名:端口 格式的地址填进配置里就可以了。

注:这里需要 2.6.2 或者更新的版本,nebula-spark-connector / nebula-algorithm 才支持域名形式的 MetaD 地址。

这里来具体实操下网络配置:

  • 获取 MetaD 地址
(root@nebula) [(none)]> show hosts meta
+------------------------------------------------------------------+------+----------+--------+--------------+---------+
| Host | Port | Status | Role | Git Info Sha | Version |
+------------------------------------------------------------------+------+----------+--------+--------------+---------+
| "nebula-metad-0.nebula-metad-headless.default.svc.cluster.local" | 9559 | "ONLINE" | "META" | "d113f4a" | "2.6.2" |
+------------------------------------------------------------------+------+----------+--------+--------------+---------+
Got 1 rows (time spent 1378/2598 us) Mon, 14 Feb 2022 08:22:33 UTC

这里需要记录 Host 名以便后续的配置文件中使用该名称。

  • 填写 nebula-algorithm 的配置文件

参考文档 https://github.com/vesoft-inc/nebula-algorithm/blob/master/nebula-algorithm/src/main/resources/application.conf。填写配置文件有两种方法:修改 TOML 文件或者在 nebula-spark-connector 代码中添加配置信息。

方法一:修改 TOML 文件

# ...
nebula: {
# algo's data source from Nebula. If data.source is nebula, then this nebula.read config can be valid.
read: {
# 这里填上刚获得到的 meta 的 Host 名,多个地址的话用英文字符下的逗号隔开;
        metaAddress: "nebula-metad-0.nebula-metad-headless.default.svc.cluster.local:9559"
#...

方法二:调用 nebula-spark-connector 的代码

Ref: https://github.com/vesoft-inc/nebula-spark-connector

  val config = NebulaConnectionConfig
.builder()
// 这里填上刚获得到的 meta 的 Host 名
.withMetaAddress("nebula-metad-0.nebula-metad-headless.default.svc.cluster.local:9559")
.withConenctionRetry(2)
.build()
val nebulaReadVertexConfig: ReadNebulaConfig = ReadNebulaConfig
.builder()
.withSpace("foo_bar_space")
.withLabel("person")
.withNoColumn(false)
.withReturnCols(List("birthday"))
.withLimit(10)
.withPartitionNum(10)
.build()
val vertex = spark.read.nebula(config, nebulaReadVertexConfig).loadVerticesToDF()

好的,到现在为止,过程看起来非常简单。那么,为什么这么简单的过程却值得一篇文章呢?

配置信息容易忽略的问题

刚才我们讲了具体的实际操作,但当中有一些理论小知识在这里:

a. MetaD 隐含地需要保证 StorageD 的地址能被 Spark 环境访问;

b. StorageD 地址是从 MetaD 获取的;

c. Nebula K8s Operator 里,MetaD 中存储的 StorageD 地址(服务发现)的来源是 StorageD 的配置文件,而它是 K8s 的内部地址。

背景知识

a. 的理由比较直接,和 Nebula 的架构有关:图的数据都存在 Storage Service 之中,通常用语句的查询是透过 Graph Service 来透传,只需要 GraphD 的连接就足够,而 nebula-spark-connector 使用 Nebula Graph 的场景是扫描全图或者子图,这时候计算存储分离的设计使得我们可以绕过查询、计算层直接高效读取图数据。

那么问题来了,为什么需要且只要 MetaD 的地址呢?

这也是和架构有关,Meta Service 里包含了全图的分布数据与分布式的 Storage Service 的各个分片和实例的分布,所以一方面因为只有 Meta 才有全图的信息(需要),另一方面因为从 Meta 可以获得这部分信息(只要)。到这里 b. 的答案也有了。

下面我们看看 c. 背后的逻辑:

c. Nebula K8s Operator 里,MetaD 中存储的 StorageD 地址(服务发现)的来源是 StorageD 的配置文件,而它是 k8s 的内部地址。

这和 Nebula Graph 里的服务发现机制有关:在 Nebula Graph 集群中,Graph Service 和 Storage Service 都是通过心跳将自己的信息上报给 Meta Service 的,而这其中服务自身的地址的来源则来自于他们相应的配置文件中的网络配置。

最后,我们知道 Nebula Operator 是一个在 K8s 集群中按照配置,自动创建、维护、扩缩容 Nebula 集群的 K8s 控制面的应用,它需要抽象一部分内部资源相关的配置,这就包括了 GraphD 和 StorageD 实例的实际地址,他们是被配置的地址实际上是 headless service 地址

而这些地址(如下)默认是没法被 K8s 外部网络访问的,所以针对 GraphD、MetaD 我们可以方便创建服务将其暴露出来。

(root@nebula) [(none)]> show hosts meta
+------------------------------------------------------------------+------+----------+--------+--------------+---------+
| Host | Port | Status | Role | Git Info Sha | Version |
+------------------------------------------------------------------+------+----------+--------+--------------+---------+
| "nebula-metad-0.nebula-metad-headless.default.svc.cluster.local" | 9559 | "ONLINE" | "META" | "d113f4a" | "2.6.2" |
+------------------------------------------------------------------+------+----------+--------+--------------+---------+
Got 1 rows (time spent 1378/2598 us) Mon, 14 Feb 2022 09:22:33 UTC (root@nebula) [(none)]> show hosts graph
+---------------------------------------------------------------+------+----------+---------+--------------+---------+
| Host | Port | Status | Role | Git Info Sha | Version |
+---------------------------------------------------------------+------+----------+---------+--------------+---------+
| "nebula-graphd-0.nebula-graphd-svc.default.svc.cluster.local" | 9669 | "ONLINE" | "GRAPH" | "d113f4a" | "2.6.2" |
+---------------------------------------------------------------+------+----------+---------+--------------+---------+
Got 1 rows (time spent 2072/3403 us) Mon, 14 Feb 2022 10:03:58 UTC (root@nebula) [(none)]> show hosts storage
+------------------------------------------------------------------------+------+----------+-----------+--------------+---------+
| Host | Port | Status | Role | Git Info Sha | Version |
+------------------------------------------------------------------------+------+----------+-----------+--------------+---------+
| "nebula-storaged-0.nebula-storaged-headless.default.svc.cluster.local" | 9779 | "ONLINE" | "STORAGE" | "d113f4a" | "2.6.2" |
| "nebula-storaged-1.nebula-storaged-headless.default.svc.cluster.local" | 9779 | "ONLINE" | "STORAGE" | "d113f4a" | "2.6.2" |
| "nebula-storaged-2.nebula-storaged-headless.default.svc.cluster.local" | 9779 | "ONLINE" | "STORAGE" | "d113f4a" | "2.6.2" |
+------------------------------------------------------------------------+------+----------+-----------+--------------+---------+
Got 3 rows (time spent 1603/2979 us) Mon, 14 Feb 2022 10:05:24 UTC

然而,因为前边提到的 nebula-spark-connector 通过 Meta Service 去获取 StorageD 的地址,且这个地址是服务发现而得,所以 nebula-spark-connector 实际上获取的 StorageD 地址就是上边的这种 headless 的服务地址,没法直接从外部访问。

所以,我们在有条件的情况下,只需要让 Spark 运行在和 Nebula Cluster 相同的 K8s 网络里,一切就迎刃而解了,否则,我们需要:

  1. 将 MetaD 和 StorageD 的地址利用 Ingress 等方式将其 L4(TCP)暴露出来。

    可以参考 Nebula Operator 的文档:https://github.com/vesoft-inc/nebula-operator

  2. 通过反向代理和DNS让这些 headless 服务能被解析到相应的 StorageD。

那么,有没有更方便的方式?

非常抱歉的是,目前最方便的方式依然是如文章最开头所介绍:让 Spark 运行在 Nebula Cluster 内部。实际上,我在努力推进 Nebula Spark 社区去支持可以配置的 StorageAddresses 选项,有了它之后,前边提到的 2. 就是不必要的了。

更便捷的 nebula-algorithm + nebula-operator 体验

为了方便在 K8s 上尝鲜 nebula-graph、nebula-algorithm 的同学,这里安利下本人写的一个小工具 Neubla-Operator-KinD,它是个一键在 Docker 环境内部单独部署一个 K8s 集群,并在其中部署 Nebula Operator 以及所有依赖(包括 storage provider)的小工具。不仅如此,它还会自动部署一个小的 Nebula 集群。可以看下边的步骤哈:

第一步,部署 K8s + nebula-operator + Nebula Cluster:

curl -sL nebula-kind.siwei.io/install.sh | bash

第二步,照着工具文档里的 what's next

a. 用 console 连接集群,并加载示例数据集

b. 在这个 K8s 里跑一个图算法

  • 创建一个 Spark 环境
kubectl create -f http://nebula-kind.siwei.io/deployment/spark.yaml
kubectl wait pod --timeout=-1s --for=condition=Ready -l '!job-name'
  • 等上边的 wait 都 ready 之后,进入 spark 的 pod。
kubectl exec -it deploy/spark-deployment -- bash

注意事项:

# 下载 nebula-algorithm-2.6.2.jar
wget https://repo1.maven.org/maven2/com/vesoft/nebula-algorithm/2.6.2/nebula-algorithm-2.6.2.jar
# 下载 nebula-algorthm 配置文件
wget https://github.com/vesoft-inc/nebula-algorithm/raw/v2.6/nebula-algorithm/src/main/resources/application.conf
  • 修改 nebula-algorithm 中的 mete 和 graph 地址信息。
sed -i '/^        metaAddress/c\        metaAddress: \"nebula-metad-0.nebula-metad-headless.default.svc.cluster.local:9559\"' application.conf
sed -i '/^ graphAddress/c\ graphAddress: \"nebula-graphd-0.nebula-graphd-svc.default.svc.cluster.local:9669\"' application.conf
##### change space
sed -i '/^ space/c\ space: basketballplayer' application.conf
##### read data from nebula graph
sed -i '/^ source/c\ source: nebula' application.conf
##### execute algorithm: labelpropagation
sed -i '/^ executeAlgo/c\ executeAlgo: labelpropagation' application.conf
  • 在 basketballplayer 图空间执行 LPA 算法
/spark/bin/spark-submit --master "local" --conf spark.rpc.askTimeout=6000s \
--class com.vesoft.nebula.algorithm.Main \
nebula-algorithm-2.6.2.jar \
-p application.conf
  • 结果如下:
bash-5.0# ls /tmp/count/
_SUCCESS part-00000-5475f9f4-66b9-426b-b0c2-704f946e54d3-c000.csv
bash-5.0# head /tmp/count/part-00000-5475f9f4-66b9-426b-b0c2-704f946e54d3-c000.csv
_id,lpa
1100,1104
2200,2200
2201,2201
1101,1104
2202,2202

下面,你就可以 Happy Graphing 啦!


交流图数据库技术?加入 Nebula 交流群请先填写下你的 Nebula 名片,Nebula 小助手会拉你进群~~

关注公众号

在 Nebula K8s 集群中使用 nebula-spark-connector 和 nebula-algorithm的更多相关文章

  1. 【K8S学习笔记】Part2:获取K8S集群中运行的所有容器镜像

    本文将介绍如何使用kubectl列举K8S集群中运行的Pod内的容器镜像. 注意:本文针对K8S的版本号为v1.9,其他版本可能会有少许不同. 0x00 准备工作 需要有一个K8S集群,并且配置好了k ...

  2. k8s 集群中的etcd故障解决

    一次在k8s集群中创建实例发现etcd集群状态出现连接失败状况,导致创建实例失败.于是排查了一下原因. 问题来源 下面是etcd集群健康状态: [root@docker01 ~]# cd /opt/k ...

  3. 将 master 节点服务器从 k8s 集群中移除并重新加入

    背景 1 台 master 加入集群后发现忘了修改主机名,而在 k8s 集群中修改节点主机名非常麻烦,不如将 master 退出集群改名并重新加入集群(前提是用的是高可用集群). 操作步骤 ssh 登 ...

  4. k8s集群中遇到etcd集群故障的排查思路

    一次在k8s集群中创建实例发现etcd集群状态出现连接失败状况,导致创建实例失败.于是排查了一下原因. 问题来源 下面是etcd集群健康状态: 1 2 3 4 5 6 7 8 9 10 11 [roo ...

  5. k8s集群中部署prometheus server

    1.概述 本文档主要介绍如何在k8s集群中部署prometheus server用来作为监控的数据采集服务器,这样做可以很方便的对k8s集群中的指标.pod的.节点的指标进行采集和监控. 2.下载镜像 ...

  6. 如何在 Serverless K8s 集群中低成本运行 Spark 数据计算?

    作者 | 柳密 阿里巴巴阿里云智能 ** 本文整理自<Serverless 技术公开课>,关注"Serverless"公众号,回复"入门",即可获取 ...

  7. 实操教程丨如何在K8S集群中部署Traefik Ingress Controller

    注:本文使用的Traefik为1.x的版本 在生产环境中,我们常常需要控制来自互联网的外部进入集群中,而这恰巧是Ingress的职责. Ingress的主要目的是将HTTP和HTTPS从集群外部暴露给 ...

  8. 终于解决 k8s 集群中部署 nodelocaldns 的问题

    自从开始在 kubernetes 集群中部署 nodelocaldns 以提高 dns 解析性能以来,一直被一个问题困扰,只要一部署 nodelocaldns ,在 coredns 中添加的 rewr ...

  9. k8s集群中部署Rook-Ceph高可用集群

    先决条件 为确保您有一个准备就绪的 Kubernetes 集群Rook,您可以按照这些说明进行操作. 为了配置 Ceph 存储集群,至少需要以下本地存储选项之一: 原始设备(无分区或格式化文件系统) ...

随机推荐

  1. Python标准库:datetime 时间和日期模块 —— 时间的获取和操作详解

    datetime 时间和日期模块 datetime 模块提供了以简单和复杂的方式操作日期和时间的类.虽然支持日期和时间算法,但实现的重点是有效的成员提取以进行输出格式化和操作.该模块还支持可感知时区的 ...

  2. .NET 诞生已20周年,您的 .NET 技能是否还停留在2010 年?

    20年来,我们见证了超过上千万.NET 开发员,当前有600万.NET 开发者正在使用.NET技术构建各类解决方案.今天,IT市场对.NET 开发人员的需求达到了前所未有的程度,特别是在中国,各大公司 ...

  3. Sleep_Yield_Join

    名称解释 Sleep:意思就是睡眠,当前线程暂停一段时间让给别的线程去运行;Sleep是怎么复活的?由你的睡眠时间而定,等睡眠到规定的时间自动复活. Yield:就是当前线程正在执行的时候停止下来进入 ...

  4. Core Animation的使用步骤

  5. laravel操作Redis排序/删除/列表/随机/Hash/集合等方法全解

    Song • 3563 次浏览 • 0 个回复 • 2017年10月简介 Redis模块负责与Redis数据库交互,并提供Redis的相关API支持: Redis模块提供redis与redis.con ...

  6. 学习jsp篇:jsp Session介绍

    1.Session基本介绍 Session---会话,它是一个内置对象.会话打个比方说就是浏览网站:开始到结束,或者说购物从开始到结束. 2.Session机制 客户端在第一次请求服务端时,服务端会产 ...

  7. 手动加载nacos自定义配置到全局变量中

    由于springboot启动顺序:先加载上下文再加载bean 开始日常搬砖: 1.通过启动日志发现nacos在PropertySourceBootstrapConfiguration中加载上下文配置: ...

  8. GRC: 个人信息保护法, 个人隐私, 企业风险合规治理

    声明 个人原创, 转载需注明来源 https://www.cnblogs.com/milton/p/15885344.html 个人信息保护的历史和现状 个人信息保护的立法可追溯至德国黑森州1970年 ...

  9. springcloud+gateway微服务整合swagger

    单一的微服务集成swagger: maven: <dependency> <groupId>io.springfox</groupId> <artifactI ...

  10. 范数||x||(norm)笔记

    1. 范数的含义和定义 范数是具有"长度"概念的函数.在线性代数.泛函分析及相关领域,是一个函数,它为向量空间内的所有向量赋予非零的正的长度或大小.另一方面,半范数可以为非零的向量 ...