Neural Network模型复杂度之Dropout - Python实现
背景介绍
Neural Network之模型复杂度主要取决于优化参数个数与参数变化范围. 优化参数个数可手动调节, 参数变化范围可通过正则化技术加以限制. 本文从优化参数个数出发, 以dropout技术为例, 简要演示dropout参数丢弃比例对Neural Network模型复杂度的影响.算法特征
①. 训练阶段以概率丢弃数据点; ②. 测试阶段保留所有数据点算法推导
以概率\(p\)对数据点\(x\)进行如下变换,\[\begin{equation*}
x' = \left\{\begin{split}
&0 &\quad\text{with probability $p$,} \\
&\frac{x}{1-p} &\quad\text{otherwise,}
\end{split}\right.
\end{equation*}
\]即数据点\(x\)以概率\(p\)置零, 以概率\(1-p\)放大\(1/(1-p)\)倍. 此时有,
\[\begin{equation*}
\mathbf{E}[x'] = p\mathbf{E}[0] + (1-p)\mathbf{E}[\frac{x}{1-p}] = \mathbf{E}[x],
\end{equation*}
\]此变换不改变数据点均值, 为无偏变换.
若数据点\(x\)作为某线性变换之输入, 将其置零, 则对此线性变换无贡献, 等效于无效化该数据点及相关权重参数, 减少了优化参数个数, 降低了模型复杂度.数据、模型与损失函数
数据生成策略如下,\[\begin{equation*}
\left\{\begin{aligned}
x &= r + 2g + 3b \\
y &= r^2 + 2g^2 + 3b^2 \\
lv &= -3r - 4g - 5b
\end{aligned}\right.
\end{equation*}
\]Neural Network网络模型如下,

其中, 输入层为$(r, g, b)$, 隐藏层取激活函数$\tanh$, 输出层为$(x, y, lv)$且不取激活函数.
损失函数如下,
$$
\begin{equation*}
L = \sum_i\frac{1}{2}(\bar{x}^{(i)}-x^{(i)})^2+\frac{1}{2}(\bar{y}^{(i)}-y^{(i)})^2+\frac{1}{2}(\bar{lv}^{(i)}-lv^{(i)})^2
\end{equation*}
$$
其中, $i$为data序号, $(\bar{x}, \bar{y}, \bar{lv})$为相应观测值.代码实现
本文拟将中间隐藏层节点数设置为300, 使模型具备较高复杂度. 后逐步提升置零概率\(p\), 使模型复杂度降低, 以此观察泛化误差的变化. 具体实现如下,code
import numpy
import torch
from torch import nn
from torch import optim
from torch.utils import data
from matplotlib import pyplot as plt # 获取数据与封装数据
def xFunc(r, g, b):
x = r + 2 * g + 3 * b
return x def yFunc(r, g, b):
y = r ** 2 + 2 * g ** 2 + 3 * b ** 2
return y def lvFunc(r, g, b):
lv = -3 * r - 4 * g - 5 * b
return lv class GeneDataset(data.Dataset): def __init__(self, rRange=[-1, 1], gRange=[-1, 1], bRange=[-1, 1], num=100, transform=None,\
target_transform=None):
self.__rRange = rRange
self.__gRange = gRange
self.__bRange = bRange
self.__num = num
self.__transform = transform
self.__target_transform = transform self.__X = self.__build_X()
self.__Y_ = self.__build_Y_() def __build_X(self):
rArr = numpy.random.uniform(*self.__rRange, (self.__num, 1))
gArr = numpy.random.uniform(*self.__gRange, (self.__num, 1))
bArr = numpy.random.uniform(*self.__bRange, (self.__num, 1))
X = numpy.hstack((rArr, gArr, bArr))
return X def __build_Y_(self):
rArr = self.__X[:, 0:1]
gArr = self.__X[:, 1:2]
bArr = self.__X[:, 2:3]
xArr = xFunc(rArr, gArr, bArr)
yArr = yFunc(rArr, gArr, bArr)
lvArr = lvFunc(rArr, gArr, bArr)
Y_ = numpy.hstack((xArr, yArr, lvArr))
return Y_ def __len__(self):
return self.__num def __getitem__(self, idx):
x = self.__X[idx]
y_ = self.__Y_[idx]
if self.__transform:
x = self.__transform(x)
if self.__target_transform:
y_ = self.__target_transform(y_)
return x, y_ # 构建模型
class Linear(nn.Module): def __init__(self, dim_in, dim_out):
super(Linear, self).__init__() self.__dim_in = dim_in
self.__dim_out = dim_out
self.weight = nn.Parameter(torch.randn((dim_in, dim_out)))
self.bias = nn.Parameter(torch.randn((dim_out,))) def forward(self, X):
X = torch.matmul(X, self.weight) + self.bias
return X class Tanh(nn.Module): def __init__(self):
super(Tanh, self).__init__() def forward(self, X):
X = torch.tanh(X)
return X class Dropout(nn.Module): def __init__(self, p):
super(Dropout, self).__init__() assert 0 <= p <= 1
self.__p = p # 置零概率 def forward(self, X):
if self.__p == 0:
return X
if self.__p == 1:
return torch.zeros_like(X)
mark = (torch.rand(X.shape) > self.__p).type(torch.float)
X = X * mark / (1 - self.__p)
return X class MLP(nn.Module): def __init__(self, dim_hidden=50, p=0, is_training=True):
super(MLP, self).__init__() self.__dim_hidden = dim_hidden
self.__p = p
self.training = True
self.__dim_in = 3
self.__dim_out = 3 self.lin1 = Linear(self.__dim_in, self.__dim_hidden)
self.tanh = Tanh()
self.drop = Dropout(self.__p)
self.lin2 = Linear(self.__dim_hidden, self.__dim_out) def forward(self, X):
X = self.tanh(self.lin1(X))
if self.training:
X = self.drop(X)
X = self.lin2(X)
return X # 构建损失函数
class MSE(nn.Module): def __init__(self):
super(MSE, self).__init__() def forward(self, Y, Y_):
loss = torch.sum((Y - Y_) ** 2) / 2
return loss # 训练单元与测试单元
def train_epoch(trainLoader, model, loss_fn, optimizer):
model.train()
loss = 0 with torch.enable_grad():
for X, Y_ in trainLoader:
optimizer.zero_grad()
Y = model(X)
loss_tmp = loss_fn(Y, Y_)
loss_tmp.backward()
optimizer.step() loss += loss_tmp.item()
return loss def test_epoch(testLoader, model, loss_fn):
model.eval()
loss = 0 with torch.no_grad():
for X, Y_ in testLoader:
Y = model(X)
loss_tmp = loss_fn(Y, Y_)
loss += loss_tmp.item() return loss # 进行训练与测试
def train(trainLoader, testLoader, model, loss_fn, optimizer, epochs):
minLoss = numpy.inf
for epoch in range(epochs):
trainLoss = train_epoch(trainLoader, model, loss_fn, optimizer) / len(trainLoader.dataset)
testLoss = test_epoch(testLoader, model, loss_fn) / len(testLoader.dataset)
if testLoss < minLoss:
minLoss = testLoss
torch.save(model.state_dict(), "./mlp.params")
# if epoch % 100 == 0:
# print(f"epoch = {epoch:8}, trainLoss = {trainLoss:15.9f}, testLoss = {testLoss:15.9f}")
return minLoss numpy.random.seed(0)
torch.random.manual_seed(0) def search_dropout():
trainData = GeneDataset(num=50, transform=torch.Tensor, target_transform=torch.Tensor)
trainLoader = data.DataLoader(trainData, batch_size=50, shuffle=True)
testData = GeneDataset(num=1000, transform=torch.Tensor, target_transform=torch.Tensor)
testLoader = data.DataLoader(testData, batch_size=1000, shuffle=False) dim_hidden1 = 300
p = 0.005
model = MLP(dim_hidden1, p)
loss_fn = MSE()
optimizer = optim.Adam(model.parameters(), lr=0.003)
train(trainLoader, testLoader, model, loss_fn, optimizer, 100000) pRange = numpy.linspace(0, 1, 101)
lossList = list()
for idx, p in enumerate(pRange):
model = MLP(dim_hidden1, p)
loss_fn = MSE()
optimizer = optim.Adam(model.parameters(), lr=0.003)
model.load_state_dict(torch.load("./mlp.params"))
loss = train(trainLoader, testLoader, model, loss_fn, optimizer, 100000)
lossList.append(loss)
print(f"p = {p:10f}, loss = {loss:15.9f}") minIdx = numpy.argmin(lossList)
pBest = pRange[minIdx]
lossBest = lossList[minIdx] fig = plt.figure(figsize=(5, 4))
ax1 = fig.add_subplot(1, 1, 1)
ax1.plot(pRange, lossList, ".--", lw=1, markersize=5, label="testing error", zorder=1)
ax1.scatter(pBest, lossBest, marker="*", s=30, c="red", label="optimal", zorder=2)
ax1.set(xlabel="$p$", ylabel="error", title="optimal dropout probability = {:.5f}".format(pBest))
ax1.legend()
fig.tight_layout()
fig.savefig("search_p.png", dpi=100)
# plt.show() if __name__ == "__main__":
search_dropout()
结果展示

可以看到, 泛化误差在提升置零概率后先下降后上升, 大致对应降低模型复杂度使模型表现从过拟合至欠拟合.
使用建议
①. dropout为使整个节点失效, 通常作用在节点的最终输出上(即激活函数后);
②. dropout适用于神经网络全连接层.参考文档
①. 动手学深度学习 - 李牧
Neural Network模型复杂度之Dropout - Python实现的更多相关文章
- A Neural Network in 11 lines of Python
A Neural Network in 11 lines of Python A bare bones neural network implementation to describe the in ...
- Recurrent Neural Network系列2--利用Python,Theano实现RNN
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...
- Recurrent Neural Network系列4--利用Python,Theano实现GRU或LSTM
yi作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORK ...
- Python -- machine learning, neural network -- PyBrain 机器学习 神经网络
I am using pybrain on my Linuxmint 13 x86_64 PC. As what it is described: PyBrain is a modular Machi ...
- [Python Debug]Kernel Crash While Running Neural Network with Keras|Jupyter Notebook运行Keras服务器宕机原因及解决方法
最近做Machine Learning作业,要在Jupyter Notebook上用Keras搭建Neural Network.结果连最简单的一层神经网络都运行不了,更奇怪的是我先用iris数据集跑了 ...
- 从0开始用python实现神经网络 IMPLEMENTING A NEURAL NETWORK FROM SCRATCH IN PYTHON – AN INTRODUCTION
code地址:https://github.com/dennybritz/nn-from-scratch 文章地址:http://www.wildml.com/2015/09/implementing ...
- 机器学习: Python with Recurrent Neural Network
之前我们介绍了Recurrent neural network (RNN) 的原理: http://blog.csdn.net/matrix_space/article/details/5337404 ...
- 通过Visualizing Representations来理解Deep Learning、Neural network、以及输入样本自身的高维空间结构
catalogue . 引言 . Neural Networks Transform Space - 神经网络内部的空间结构 . Understand the data itself by visua ...
- Recurrent Neural Network[survey]
0.引言 我们发现传统的(如前向网络等)非循环的NN都是假设样本之间无依赖关系(至少时间和顺序上是无依赖关系),而许多学习任务却都涉及到处理序列数据,如image captioning,speech ...
- A Survey of Model Compression and Acceleration for Deep Neural Network时s
A Survey of Model Compression and Acceleration for Deep Neural Network时s 本文全面概述了深度神经网络的压缩方法,主要可分为参数修 ...
随机推荐
- 精美的web前端源码的特效
1.JS自定义烟花特效 这是一款基于JS和Canvas的自定义烟花特效,初始化界面的时候特效是不带声效的绽放,当你点击顶部中间的播放,即可以看到美丽的烟火也可以听到烟花绽放的声音,让你脑海浮现过年团圆 ...
- StartAllBack使用教程
StartAllBack简介 StartAllBack是一款Win11开始菜单增强工具,为Windows11恢复经典样式的Windows7主题风格开始菜单和任务栏,功能包括:自定义开始菜单样式和操作, ...
- gitlabApi如何获取项目文件夹的commitId
在我们做配置管理系统和gitlab系统集成的时候,有一个常见的场景,就是要获取某个文件的commitId,来记录本次配置文件提交的版本.这个通过gitlabApi很容易实现: GET /proje ...
- kali linux破解wifi密码-超详细过程
前期准备VMware Workstation虚拟机在虚拟机安装好kail linunx系统无线网卡(芯片为3070或者1887L都支持Linux)一.打开终端,用airmon-ng命令查看如果出现无法 ...
- ubuntu 一键安装lnmp环境
转载csdn: ubuntu 一键安装lnmp环境_手艺人小在的博客-CSDN博客 注意:采用编译安装方法,花费时间较长,这个只有稳定版的,没有高版本的. 转载vpsgo: Linux上一键安装LNM ...
- vscode+eslint项目规范化,自动格式化配置(项目中用到的)
项目如果没有格式化插件就会变得十分拥挤,并且因为个人的开发习惯不同,会导致多人配合的时候,某些人的格式不能与你的兼容 导致项目大面积冲突,这样一来统一的格式和开发规范就十分必要了. 1.下载使用vsc ...
- 关于vue组件传值和事件绑定问题
<template> <view style="width: 100%; height: 100%;"> <view class="tabs ...
- javaSE学习二
使用Scanner实现用户交互 注意点:使用next方法时一定读取到有效字符后才能结束输入,有效字符前的空白自动去除,有效字符后的空白为结束符,next不能得到有空格的字符串. nextline方法以 ...
- BackTrader 简单BTC的SMA15回测DEMO
import time import requests import json import csv from requests.packages.urllib3 import disable_war ...
- Matplotlib 绘图线
绘图过程如果我们自定义线的样式,包括线的类型.颜色和大小等. 线的类型 线的类型可以使用 linestyle 参数来定义,简写为 ls. 类型 简写 说明 'solid' (默认) '-' 实线 'd ...