归纳学习(Inductive Learning),直推学习(Transductive Learning),困难负样本(Hard Negative)
归纳学习(Inductive Learning): 顾名思义,就是从已有训练数据中归纳出模式来,应用于新的测试数据和任务。我们常用的机器学习模式就是归纳学习。
直推学习(Transductive Learning): 也叫转导学习,指的是由当前学习的知识直接推广到指定的部分数据上。即用于训练的数据包含了测试数据,学习过程是作用在这个固定的数据上的,一旦数据发生改变,需要重新进行学习训练。
Inductive Learning 对应于meta-learning(元学习),要求从诸多给定的任务和数据中学习通用的模式,迁移到未知的任务和数据上。
Transductive Learning 对应于domain adaptation(领域自适应),给定训练的数据包含了目标域数据,要求训练一个对目标域数据有最小误差的模型。
困难负样本(Hard Negative): hard negative就是当你得到错误的预测样本时,会创建一个负样本,并把这个负样本添加到训练集中去。当重新训练你的分类器后,分类器会表现的更好,并且不会像之前那样产生多的错误的正样本。
归纳学习(Inductive Learning),直推学习(Transductive Learning),困难负样本(Hard Negative)的更多相关文章
- 【重磅干货整理】机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总
[重磅干货整理]机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总 .
- 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
- 【Supervised Learning】 集成学习Ensemble Learning & Boosting 算法(python实现)
零. Introduction 1.learn over a subset of data choose the subset uniformally randomly (均匀随机地选择子集) app ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料
机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008 ...
- 主动学习——active learning
阅读目录 1. 写在前面 2. 什么是active learning? 3. active learning的基本思想 4. active learning与半监督学习的不同 5. 参考文献 1. ...
- 《A Survey on Transfer Learning》迁移学习研究综述 翻译
迁移学习研究综述 Sinno Jialin Pan and Qiang Yang,Fellow, IEEE 摘要: 在许多机器学习和数据挖掘算法中,一个重要的假设就是目前的训练数据和将来的训练数据 ...
- 【机器学习】转导推理——Transductive Learning
在统计学习中,转导推理(Transductive Inference)是一种通过观察特定的训练样本,进而预测特定的测试样本的方法.另一方面,归纳推理(Induction Inference)先从训练样 ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
随机推荐
- 论文解读(g-U-Nets)《Graph U-Nets》
论文信息 论文标题:Graph U-Nets论文作者:Hongyang Gao, Shuiwang Ji论文来源:2019,ICML论文地址:download 论文代码:download 1 Intr ...
- docker 部署私人 nuget 服务
使用docker搭建私有Nuget服务 首先在linux服务器上创建两个容器挂着目录 mkdir /home/nuget/db mkdir /home/nuget/packages 并且对该目录指定写 ...
- Java 数字转汉字
阿拉伯数字转汉字 public static String number2chinese(int src) { final String num[] = {"零", "一 ...
- 搞定面试官 - 你可以介绍一下在 MySQL 中,哪些情况下 索引会失效嘛?
大家好,我是程序员啊粥,前边给大家分享了 *MySQL InnoDB 索引模型 在 MySQL InnoDB 中,为什么 delete 删除数据之后表数据文件大小没有变 如何计算一个索引的长度 如何查 ...
- CSP2021-S游记
前言 年纪大了,脑子乱了,渐渐被低年级吊打了. 大家这么内卷下去,高年级的普遍后悔自己生早了,低年级永远占优势,不只是机会优势,还有能力优势. 快进到改变基因出生国家队算了-- Day0 非常不幸地被 ...
- 超详细 VS Code 配置C/C++教程
写在前面 如果您使用的电脑内存 \(\leq 4 \texttt{GB}\),建议您使用Dev-C++,否则会到时内存占用爆满,体验感不佳. 网上的很多教程都不够详细,这里我把每一步.每一个操作都详细 ...
- KingbaseESV8R6 垃圾回收原理以及如何预防膨胀
背景 KingbaseESV8R6支持snapshot too old 那么实际工作中,经常看到表又膨胀了,那么我们讨论一下导致对象膨胀的常见原因有哪些呢? 未开启autovacuum 对于未开启au ...
- KingbaseES ksqlrc文件介绍
ksqlrc文件作用 ksql在连接到数据库后但在接收正常的命令之前,会尝试读取并执行该文件中的命令,如果加上-X参数,则跳过该文件. 系统级的启动文件是ksqlrc,文件在安装好的KingbaseE ...
- KingbaseES 并行查询
背景:随着硬件技术的提升,磁盘的IO能力及CPU的运算能力都得到了极大的增强,如何充分利用硬件资源为运算加速,是数据库设计过程中必须考虑的问题.数据库是IO和CPU密集型的软件,大规模的数据访问需要大 ...
- java的URI和URL的关系
java的URI和URL到底是什么 在我们做开发时,经常有URI和URL弄混的问题,如果当时直接看URI和URL的源码就不可能弄混.首先我总结一下URI和URL的关系:他们的关系是:URL是一种特殊的 ...