4-Pandas数据预处理之数据转换(df.map()、df.replace())
在数据分析中,根据需求,有时候需要将一些数据进行转换,而在Pandas中,实现数据转换的常用方法有:
- 利用函数或是映射
- 可以将自己定义的或者是其他包提供的函数用在Pandas对象上实现批量修改。
- applymap和map实例方法
在本节中,使用调查的某公司的员工信息为例:
numeber_project:员工所在项目个数
left:该员工是否离职
salary:工资级别
>>> import pandas as pd
>>> import numpy as np
>>> data = pd.read_csv('./input/HR.csv',encoding = 'gbk')
>>> data = data[['number_project','left','salary']]
>>> data.head()
number_project left salary
0 2 1 low
1 5 1 medium
2 7 1 medium
3 5 1 low
4 2 1 low
一、map()、replace()
(1)使用函数。例:将salary列的数据转换成每个单词的字母大写:
>>> data['salary'].map(str.title)[:5]
0 Low
1 Medium
2 Medium
3 Low
4 Low
Name: salary, dtype: object
(2)使用映射关系的字典。例:对于left,生成一个指标标量indicator。若为‘YES’,表示left=1,若为‘NO’,表示left=0(一般在数据处理时是将字符处理成0,1...n,在此时为了便于理解,故如此举例)。
>>> mapper = {0:'NO',1:'YES'}
>>> data['left'] = data['left'].map(mapper)
>>> data.head()
number_project left salary
0 2 YES Low
1 5 YES Medium
2 7 YES Medium
3 5 YES Low
4 2 YES Low
注意:使用映射关系的字典map()必须考虑到所有的值,若没有,那么没有映射关系的值将会为NaN,如下例子:
>>> s = pd.Series(['A','B','C'])
>>> s
0 A
1 B
2 C
dtype: object
>>> s.map({'A':10,'B':100})
0 10.0
1 100.0
2 NaN
dtype: float64
(3)重命名索引---->通过map方法可以对行索引或是列名的Index对象进行修改(行索引和列明都是Index对象)
>>> data.columns
Index(['number_project', 'left', 'salary'], dtype='object')
>>> data.columns.map(str.upper)
Index(['NUMBER_PROJECT', 'LEFT', 'SALARY'], dtype='object')
(4)使用映射,若需要将数据按照一定的映射关系进行替换,使用replace()。多个值的替换可以用列表,少数的值可以用包含映射关系的字典字典。
例:将number_project的值2、3、4设置为less,5、6、7设置为More。
>>> data['number_project'] = data['number_project'].replace([2,3,4,5,6,7],['Less','Less','Less','More','More','More'])
>>> data.head()
number_project left salary
0 Less YES Low
1 More YES Medium
2 More YES Medium
3 More YES Low
4 Less YES Low
现有一份数据test_loan,如下:
| user | term | int_rate | grade | loan_status | |
|---|---|---|---|---|---|
| 389 | 8 | 36 months | 13.66% | C | Fully Paid |
| 417 | 9 | 36 months | 11.99% | B | Charged Off |
| 705 | 6 | 60 months | 15.59% | D | Fully Paid |
| 921 | 7 | 60 months | 11.44% | B | Fully Paid |
| 1138 | 4 | 36 months | 13.66% | C | Fully Paid |
| 1251 | 5 | 36 months | 13.66% | C |
Charged Off |
1)loan_status状态为"Charged Off"的贷款有违约风险,视为不良贷款,将其值标记为1,其他贷款标记为0。我们使用replace()进行值替换
test_loan['loan_status']=test_loan['loan_status'].replace(["Charged Off","Fully Paid"],[1,0])
user term int_rate grade loan_status
389 8 36 months 13.66% C 0
417 9 36 months 11.99% B 1
705 6 60 months 15.59% D 0
921 7 60 months 11.44% B 0
1138 4 36 months 13.66% C 0
1251 5 36 months 13.66% C 1
2)replace()也可以同时指定不同变量的不同值替换为相同新值
test_loan.replace(to_replace={'loan_status':0,'grade':'B'},value='Good')
user term int_rate grade loan_status
389 8 36 months 13.66% C Good
417 9 36 months 11.99% Good Charged Off
705 6 60 months 15.59% D Good
921 7 60 months 11.44% Good Good
1138 4 36 months 13.66% C Good
1251 5 36 months 13.66% C Charged Off
说明:to_replace指需要替换的值,value指要替换成的新值。replace作为数值替换的方法,适用范围非常之广,可以实现多种操作。
3)也可以使用正则进行替换,设置regex=True即可,代表to_replace部分输入的是正则表达式部分
例:将D开头的全部内容替换成Bad
test_loan.replace(to_replace='D+.*$',value='Bad',regex=True) user term int_rate grade loan_status
389 8 36 months 13.66% C Fully Paid
417 9 36 months 11.99% B Charged Off
705 6 60 months 15.59% Bad Fully Paid
921 7 60 months 11.44% B Fully Paid
1138 4 36 months 13.66% C Fully Paid
1251 5 36 months 13.66% C Charged Off
4-Pandas数据预处理之数据转换(df.map()、df.replace())的更多相关文章
- Python的工具包[1] -> pandas数据预处理 -> pandas 库及使用总结
pandas数据预处理 / pandas data pre-processing 目录 关于 pandas pandas 库 pandas 基本操作 pandas 计算 pandas 的 Series ...
- pandas 数据预处理
pandas 数据预处理 缺失数据处理 csv_data=''' A,B,C,D 1.0,2.0,3.0,4.0 5.6,6.0,,8.0 0.0,11.0,12.0,,''' import pand ...
- 基于pandas数据预处理基础操作
# -*- coding: utf-8 -*- import numpy as np import pandas as pd #一.创建数据 #1.通过传递一个list对象来创建一个Series,pa ...
- 【新人赛】阿里云恶意程序检测 -- 实践记录10.20 - 数据预处理 / 训练数据分析 / TF-IDF模型调参
Colab连接与数据预处理 Colab连接方法见上一篇博客 数据预处理: import pandas as pd import pickle import numpy as np # 训练数据和测试数 ...
- 基于pandas进行数据预处理
很久没用pandas,有些有点忘了,转载一个比较完整的利用pandas进行数据预处理的博文:https://blog.csdn.net/u014400239/article/details/70846 ...
- 使用pandas进行数据预处理01
数据预处理有四种技术:数据合并,数据清洗,数据标准化,以及数据转换. 数据合并技术:(1)横向或纵向堆叠合数据 (2)主键合并数据 (3)重叠合并数据 1.堆叠合并数据: 堆叠就是简单的把两个表拼接在 ...
- 小白学 Python 数据分析(9):Pandas (八)数据预处理(2)
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 数据预处理 | 使用 Pandas 进行数值型数据的 标准化 归一化 离散化 二值化
1 标准化 & 归一化 导包和数据 import numpy as np from sklearn import preprocessing data = np.loadtxt('data.t ...
- python数据分析之pandas数据选取:df[] df.loc[] df.iloc[] df.ix[] df.at[] df.iat[]
1 引言 Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用.本文主要介绍Pandas的几种数据选取的方法. Pandas中,数据主要保存为Dataframe和Se ...
随机推荐
- JabRef:将bibtex格式的参考文献导入EndNote的转换软件
我在写小论文的时候,一直用的都是Overleaf在线latex编辑应用: https://www.overleaf.com/login 这个我感觉还是蛮好用的.只需要从期刊或者出版社的官网下载到lat ...
- idea导入hadoop jar包
hadoop jar包 在hadoop安装目录下,找到share\hadoop目录,搜索jar,全选,然后在安装目录新建_jar文件夹,将所有的jar包拷进去 idea添加jar包 在Project ...
- 每日一算之变位词(C#)
今天看编程珠玑里面,看到一个关于查找变位词的题目,大概意思如下:post,stop,tops这几个是变位词,找出类似的这些词语来. 解题思路一:既然是变位词,1.他们的长度一定是一致的:2.还有就是他 ...
- gradle , maven , ant , ivy , grant之间的区别
java项目构建工具 gradle Gradle是一个基于Apache Ant和Apache Maven概念的项目自动化构建开源工具. 它抛弃了基于XML的各种繁琐配置.它使用一种基于Groovy的特 ...
- Java课程设计---创建数据库工具类
1.传统的数据库操作 package com.java.mysql; import java.sql.Connection; import java.sql.DriverManager; import ...
- Scrapy(六):Spider
总结自:Spiders - Scrapy 2.5.0 documentation Spider 1.综述 ①在回调函数Parse及其他自写的回调函数中,必须返回Item对象.Request对象.或前两 ...
- 让Node.js支持ES6的语法
使用命令,全局安装es-checker: cnpm install -g es-checker 安装好之后,执行以下命令来查看Node.js对ES6的支持情况. es-checker 可以从输出中查看 ...
- Vue 源码解读(12)—— patch
前言 前面我们说到,当组件更新时,实例化渲染 watcher 时传递的 updateComponent 方法会被执行: const updateComponent = () => { // 执行 ...
- 公司内部一次关于OOM故障复盘分享
最近笔者有点忙,这次OOM事故发生过去两周前,记得笔者那天正带着家人在外地玩,正中午跟友人吃饭的时候,钉钉连续告警爆表,接着就是钉钉电话(显示广东抬头)一看就知道BBQ了,又一次故障发生了,今天把那次 ...
- java IO流体系--通识篇
1.I/O流是什么 Java的I/O流是实现编程语言的输入/输出的基础能力,操作的对象有外部设备.存储设备.网络连接等等,是所有服务器端的编程语言都应该具备的基础能力. I = Input(输入),输 ...