SVD分解技术数学解释
SVD分解
SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章。本节讨论SVD分解相关数学问题,一个分为3个部分,第一部分讨论线性代数中的一些基础知识,第二部分讨论SVD矩阵分解,第三部分讨论低阶近似。本节讨论的矩阵都是实数矩阵。
基础知识
1. 矩阵的秩:矩阵的秩是矩阵中线性无关的行或列的个数
2. 对角矩阵:对角矩阵是除对角线外所有元素都为零的方阵
3. 单位矩阵:如果对角矩阵中所有对角线上的元素都为1,该矩阵称为单位矩阵
4. 特征值:对一个M x M矩阵C和向量X,如果存在λ使得下式成立
则称λ为矩阵C的特征值,X称为矩阵的特征向量。非零特征值的个数小于等于矩阵的秩。
5. 特征值和矩阵的关系:考虑以下矩阵
该矩阵特征值λ1 = 30,λ2 = 20,λ3 = 1。对应的特征向量
假设VT=(2,4,6) 计算S x VT
有上面计算结果可以看出,矩阵与向量相乘的结果与特征值,特征向量有关。观察三个特征值λ1 = 30,λ2 = 20,λ3 = 1,λ3值最小,对计算结果的影响也最小,如果忽略λ3,那么运算结果就相当于从(60,80,6)转变为(60,80,0),这两个向量十分相近。这也表示了数值小的特征值对矩阵-向量相乘的结果贡献小,影响小。这也是后面谈到的低阶近似的数学基础。
矩阵分解
1. 方阵的分解
1) 设S是M x M方阵,则存在以下矩阵分解
其中U 的列为S的特征向量,为对角矩阵,其中对角线上的值为S的特征值,按从大到小排列:
2) 设S是M x M 方阵,并且是对称矩阵,有M个特征向量。则存在以下分解
其中Q的列为矩阵S的单位正交特征向量,仍表示对角矩阵,其中对角线上的值为S的特征值,按从大到小排列。最后,QT=Q-1,因为正交矩阵的逆等于其转置。
2. 奇异值分解
上面讨论了方阵的分解,但是在LSA中,我们是要对Term-Document矩阵进行分解,很显然这个矩阵不是方阵。这时需要奇异值分解对Term-Document进行分解。奇异值分解的推理使用到了上面所讲的方阵的分解。
假设C是M x N矩阵,U是M x M矩阵,其中U的列为CCT的正交特征向量,V为N x N矩阵,其中V的列为CTC的正交特征向量,再假设r为C矩阵的秩,则存在奇异值分解:
其中CCT和CTC的特征值相同,为
Σ为M X N,其中,其余位置数值为0,
的值按大小降序排列。以下是Σ的完整数学定义:
σi称为矩阵C的奇异值。
用C乘以其转置矩阵CT得:
上式正是在上节中讨论过的对称矩阵的分解。
奇异值分解的图形表示:
从图中可以看到Σ虽然为M x N矩阵,但从第N+1行到M行全为零,因此可以表示成N x N矩阵,又由于右式为矩阵相乘,因此U可以表示为M x N矩阵,VT可以表示为N x N矩阵
3. 低阶近似
LSA潜在语义分析中,低阶近似是为了使用低维的矩阵来表示一个高维的矩阵,并使两者之差尽可能的小。本节主要讨论低阶近似和F-范数。
给定一个M x N矩阵C(其秩为r)和正整数k,我们希望找到一个M x N矩阵Ck,其秩不大于K。设X为C与Ck之间的差,X=C – Ck,X的F-范数为
当k远小于r时,称Ck为C的低阶近似,其中X也就是两矩阵之差的F范数要尽可能的小。
SVD可以被用与求低阶近似问题,步骤如下:
1. 给定一个矩阵C,对其奇异值分解:
2. 构造,它是将
的第k+1行至M行设为零,也就是把
的最小的r-k个(the r-k smallest)奇异值设为零。
3. 计算Ck:
回忆在基础知识一节里曾经讲过,特征值数值的大小对矩阵-向量相乘影响的大小成正比,而奇异值和特征值也是正比关系,因此这里选取数值最小的r-k个特征值设为零合乎情理,即我们所希望的C-Ck尽可能的小。完整的证明可以在Introduction to Information Retrieval[2]中找到。
我们现在也清楚了LSA的基本思路:LSA希望通过降低传统向量空间的维度来去除空间中的“噪音”,而降维可以通过SVD实现,因此首先对Term-Document矩阵进行SVD分解,然后降维并构造语义空间。
SVD分解技术数学解释的更多相关文章
- SVD分解技术详解
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...
- 《数学之美》第15章 矩阵计算和文本处理中两个分类问题——SVD分解的应用
转载请注明原地址:http://www.cnblogs.com/connorzx/p/4170047.html 提出原因 基于余弦定理对文本和词汇的处理需要迭代的次数太多(具体见14章笔记),为了找到 ...
- 奇异值分解 SVD 的数学解释
奇异值分解(Singular Value Decomposition,SVD)是一种矩阵分解(Matrix Decomposition)的方法.除此之外,矩阵分解还有很多方法,例如特征分解(Eigen ...
- 【机器学习】推荐系统、SVD分解降维
推荐系统: 1.基于内容的实现:KNN等 2.基于协同滤波(CF)实现:SVD → pLSA(从LSA发展而来,由SVD实现).LDA.GDBT SVD算是比较老的方法,后期演进的主题模型主要是pLS ...
- SVD分解的理解[转载]
http://www.bfcat.com/index.php/2012/03/svd-tutorial/ SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视.实际上,SVD分解不但很 ...
- 机器学习之SVD分解
一.SVD奇异值分解的定义 假设是一个的矩阵,如果存在一个分解: 其中为的酉矩阵,为的半正定对角矩阵,为的共轭转置矩阵,且为的酉矩阵.这样的分解称为的奇异值分解,对角线上的元素称为奇异值,称为左奇异矩 ...
- 矩阵的SVD分解
转自 http://blog.csdn.net/zhongkejingwang/article/details/43053513(实在受不了CSDN的广告) 在网上看到有很多文章介绍SVD的,讲的也都 ...
- 投影矩阵、最小二乘法和SVD分解
投影矩阵广泛地应用在数学相关学科的各种证明中,但是由于其概念比较抽象,所以比较难理解.这篇文章主要从最小二乘法的推导导出投影矩阵,并且应用SVD分解,写出常用的几种投影矩阵的形式. 问题的提出 已知有 ...
- 机器学习中的矩阵方法04:SVD 分解
前面我们讲了 QR 分解有一些优良的特性,但是 QR 分解仅仅是对矩阵的行进行操作(左乘一个酉矩阵),可以得到列空间.这一小节的 SVD 分解则是将行与列同等看待,既左乘酉矩阵,又右乘酉矩阵,可以得出 ...
随机推荐
- spring-mvc + shiro框架整合(sonne_game网站开发04)
这篇文章讲的内容是在之前spring + mybatis + spring-mvc + freemarker框架整合的代码的基础上.有需要的可以看看我博客的前两篇文章. 另外,本文章所讲相关所有代码都 ...
- Can’t connect to local MySQL server through socket ‘/var/lib/mysql/mysql.sock’ (2)的解决方法
在连接数据库时,报这个错误,是/var/lib/mysql/ 目录下没有mysql.sock文件,在服务器搜索myslq.sock文件,我的是在/tmp/mysql.sock 解决方法是加一个软链: ...
- buildroot 重新编译 package
/************************************************************************* * buildroot 重新编译 package ...
- websocket+前后端分离+https的nginx配置
后端服务路径: 172.168.0.2:8080 172.168.0.2:7080 前端目录(html + css + js): /root/apps/mzsg-web 1.修改 /etc/nginx ...
- Windows/Linux 生成iOS证书及p12文件
操作步骤 生成csr文件(通过OpenSSL命令) 生成mobileprovision文件(通过Apple开发者后台) 生成cer文件(通过Apple开发者后台) 生成P12文件(通过OpenSSL命 ...
- tomcat的自我理解与使用心得
当一个动态动态网页编写完成后是不能直接被别人通过浏览器访问的,要想访问此动态网页就必须让浏览器通过一段程序来访问此网页,这段程序就是服务器,他用来接受浏览器的请求,进行处理,将结果返回给浏览器. to ...
- brew install nvm
brew install nvm mkdir ~/.nvm nano ~/.bash_profilectrl+x 退出 source ~/.bash_profile echo $NVM_DIR nvm ...
- CodeForces 711B Chris and Magic Square
简单题. 找一个不存在$0$的行,计算这行的和(记为$sum$),然后就可以知道$0$那个位置应该填的数字(记为$x$). 如果$x<=0$,那么无解,否则再去判断每一行,每一列以及两个斜对角的 ...
- hdu 3045 Picnic Cows(斜率优化DP)
题目链接:hdu 3045 Picnic Cows 题意: 有n个奶牛分别有对应的兴趣值,现在对奶牛分组,每组成员不少于t, 在每组中所有的成员兴趣值要减少到一致,问总共最少需要减少的兴趣值是多少. ...
- Masonry 添加约束要注意顺序
对一个视图添加约束,其依赖的约束必须先已经存在,不能依赖该代码后的约束,否则造成不可预料的结果,如下代码能达到预期效果 - (void)makeConstraints { __weak typeof( ...