【POJ3037】Skiing 最短路
题意:
有个n*m的滑雪场,bessie要从(1,1)滑到(n,m),问最小时间。
起始有一个速度v,然后每从一个点A到一个点B(仅仅能上下左右走,每次一格),速度就会乘上2^(权值A-权值B)。
然后每次移动的耗时是当前速度的倒数。
题解:
分析一下就能发现,乘乘除除后,从一个点出发时的速度都是固定的,即与从起点直接到该点的速度是一致的,那么我们就能够建成一个边权固定的无向图了,当然,A->B和B->A的距离基本不可能相等。
这道题非常坑,首先就是数据范围非常大,须要#define inf 999999999999.99
然后就是错了的话注意C++和G++都交交,然后各种输出.2f和.2lf啊神马的。
然后TLE了最好还是多写个几行代码加个pq优化。
就这些,事实上我还TLE这呢,实在是拍不出来错误,受不了了,交了个网上代码,可是我仍然要把我的代码贴一份,以助各位理解,毕竟代码风格不错。
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 105
#define NN 10100
#define M 80000
#define inf 999999999999.99
#define eps 1e-6
using namespace std;
const int dx[4]={0,0,1,-1};
const int dy[4]={1,-1,0,0};
struct KSD
{
int v,next;
double len;
}e[M];
int head[NN],cnt;
void add(int u,int v,double len)
{
cnt++;
e[cnt].v=v;
e[cnt].len=len;
e[cnt].next=head[u];
head[u]=cnt;
}
int id[N][N],num;
int n,m;
int map[N][N];
double speed[N][N],p;
int power(int x,int p)
{
int ret=1;
while(p)
{
if(p&1)ret*=x;
x*=x;
p>>=1;
}
return ret;
}
double dist[NN];
bool in[NN];
struct Lux
{
double f;
int v;
Lux(double _f,int _v):f(_f),v(_v){}
Lux(){}
bool operator < (const Lux &a)const
{return f<a.f;}
};
double spfa(int s,int t)
{
int i,u,v;
priority_queue<Lux>q;
for(i=s;i<=t;i++)dist[i]=inf;
dist[s]=0;
in[s]=1;
q.push(Lux(0,s));
while(!q.empty())
{
Lux U=q.top();
q.pop();
u=U.v;
in[u]=0;
for(i=head[u];i;i=e[i].next)
{
v=e[i].v;
if(dist[v]>dist[u]+e[i].len+eps)
{
dist[v]=dist[u]+e[i].len;
if(!in[v])
{
in[v]=1;
q.push(Lux(dist[v],v));
}
}
}
}
return dist[t];
}
int main()
{
// freopen("test.in","r",stdin);
int i,j,k;
int a,b,c;
int x,y,nid;
scanf("%lf%d%d",&p,&n,&m);p=1.0/p;
for(i=1;i<=n;i++)for(j=1;j<=m;j++)
{
id[i][j]=++num;
scanf("%d",&map[i][j]);
if(map[i][j]>=map[1][1])speed[i][j]=p*power(2,map[i][j]-map[1][1]);
else speed[i][j]=p/(double)power(2,map[1][1]-map[i][j]);
}
for(i=1;i<=n;i++)for(j=1;j<=m;j++)
{
nid=id[i][j];
for(k=0;k<4;k++)
{
x=i+dx[k];
y=j+dy[k];
if(!id[x][y])continue;
add(nid,id[x][y],speed[i][j]);
}
}
printf("%.2f\n",spfa(1,n*m));
return 0;
}
【POJ3037】Skiing 最短路的更多相关文章
- POJ3037 Skiing
Skiing 题目大意: 给定一个M*N的网格,已知在每个网格中的点可以向上下左右四个方向移动一个单位,每个点都有一个高度值. 从每个点开始移动时存在一个速度值,从A点移动到B点,则此时B点的速度为& ...
- poj练习题的方法
poj1010--邮票问题 DFSpoj1011--Sticks dfs + 剪枝poj1020--拼蛋糕poj1054--The Troublesome Frogpoj1062--昂贵的聘礼poj1 ...
- Skiing(最短路)
poj——3037 Skiing Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4921 Accepted: 1315 ...
- POJ 3037 Skiing(如何使用SPFA求解二维最短路问题)
题目链接: https://cn.vjudge.net/problem/POJ-3037 Bessie and the rest of Farmer John's cows are taking a ...
- 【转】最短路&差分约束题集
转自:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548 A strange lift基础最短路(或bfs)★254 ...
- POJ - 3037 Skiing SPFA
Skiing Bessie and the rest of Farmer John's cows are taking a trip this winter to go skiing. One day ...
- 最短路&查分约束
[HDU] 1548 A strange lift 根蒂根基最短路(或bfs)★ 2544 最短路 根蒂根基最短路★ 3790 最短路径题目 根蒂根基最短路★ 2066 一小我的观光 根蒂根基最短路( ...
- bzoj1001--最大流转最短路
http://www.lydsy.com/JudgeOnline/problem.php?id=1001 思路:这应该算是经典的最大流求最小割吧.不过题目中n,m<=1000,用最大流会TLE, ...
- 【USACO 3.2】Sweet Butter(最短路)
题意 一个联通图里给定若干个点,求他们到某点距离之和的最小值. 题解 枚举到的某点,然后优先队列优化的dijkstra求最短路,把给定的点到其的最短路加起来,更新最小值.复杂度是\(O(NElogE) ...
随机推荐
- hdu 5106 Bits Problem(数位dp)
题目链接:hdu 5106 Bits Problem 题目大意:给定n和r,要求算出[0,r)之间全部n-onebit数的和. 解题思路:数位dp,一个ct表示个数,dp表示和,然后就剩下普通的数位d ...
- PHP实现协同程序
于server其中编程.为了实现异步.通常情况下,需要回调.比例如下面的代码 function send($value) { $data = process($value); onReceive($d ...
- Android手机定位技术的发展
基于以下三种方式的移动位置:1. 网络位置 :2. 基站定位. 3. GPS定位 1 网络位置 前提是连接到网络:Wifi.3G.2G 到达IP址 比如:彩虹版QQ,珊瑚虫版QQ,就有一个功能显示对 ...
- Android组件系列----ContentProvider内容提供商【5】
2.执行query()方法,查询全部记录(眼下一共两条记录).后台输出效果例如以下: 经測试,其它方法也都是能够运行的. 事实证明,新建的另外一个project文件ContentResolverTes ...
- href="javascript:void(0);"与#差异
将<a>标签设置为空链接有两种方式.第一个是href="#",第二个是href="javascript:void(0);". 两种方式都设置了标签为 ...
- 使用php+swoole对client数据实时更新(二) (转)
上一篇提到了swoole的基本使用,现在通过几行基本的语句来实现比较复杂的逻辑操作: 先说一下业务场景.我们目前的大多数应用都是以服务端+接口+客户端的方式去协调工作的,这样的好处在于不论是处在何种终 ...
- 【Java编码准则】の #02不要在client存储未加密的敏感信息
当构建CS模式的应用程序时,在client側存储敏感信息(比如用户私要信息)可能导致非授权的信息泄漏. 对于Web应用程序来说,最常见的泄漏问题是在client使用cookies存放server端获取 ...
- WIN8 、WIN7 下IIS7.5、IIS8 的rewrite 伪静态功能设置方法
原文 WIN8 .WIN7 下IIS7.5.IIS8 的rewrite 伪静态功能设置方法 win7和win8系统都自带有iis的功能.关于IIS的安装,上一篇已经讲述,这里就不重复了. 下面说下在w ...
- Intelli idea 常用快捷键汇总
To navigate to the implementation(s) of an abstract method, position the caret at its usage or its n ...
- linux(fedora) 下dvwa 建筑环境
linux(fedora)下dvwa组态 1.下载httpd,dvwa,mysql,mysqlserver, php-mysql,php 除了dvwa 这是外界进入下一官方网站.该服务通过休息inst ...