收集和变化PSO算法,它可用于参考实施:

#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <ctime> #define rand_01 ((float)rand() / (float)RAND_MAX) const int numofdims = 30;
const int numofparticles = 50; using namespace std; //typedef void (*FitnessFunc)(float X[numofparticles][numofdims], float fitnesses[numofparticles]); void fitnessfunc(float X[numofparticles][numofdims], float fitnesses[numofparticles])
{
memset(fitnesses, 0, sizeof (float) * numofparticles);
for(int i = 0; i < numofparticles; i++)
{
for(int j = 0; j < numofdims; j++)
{
fitnesses[i] += X[i][j] * X[i][j]; //(pow(X[i][j], 2));
}
}
} void rosenBroekFunc(float X[numofparticles][numofdims], float fitnesses[numofparticles])
{
float x1, x2, t1, t2;
memset(fitnesses, 0, sizeof (float) * numofparticles);
for(int i = 0; i < numofparticles; i++)
for(int j = 0; j < numofdims - 1; j++)
{
x1 = X[i][j];
x2 = X[i][j+1];
t1 = (x2 - x1 * x1);
t1 *= t1;
t1 *= 100;
t2 = x1 - 1;
t2 *= t2;
fitnesses[i] = t1 + t2;
}
} float mean(float inputval[], int vallength)
{
float addvalue = 0;
for(int i = 0; i < vallength; i++)
{
addvalue += inputval[i];
}
return addvalue / vallength;
} void PSO(int numofiterations, float c1, float c2,
float Xmin[numofdims], float Xmax[numofdims], float initialpop[numofparticles][numofdims],
float worsts[], float meanfits[], float bests[], float *gbestfit, float gbest[numofdims])
{
float V[numofparticles][numofdims] = {0};
float X[numofparticles][numofdims];
float Vmax[numofdims];
float Vmin[numofdims];
float pbests[numofparticles][numofdims];
float pbestfits[numofparticles];
float fitnesses[numofparticles];
float w;
float minfit;
int minfitidx; memcpy(X, initialpop, sizeof(float) * numofparticles * numofdims);
fitnessfunc(X, fitnesses);
//rosenBroekFunc(X, fitnesses); // fp(X, fitnesses);
minfit = *min_element(fitnesses, fitnesses + numofparticles);
minfitidx = min_element(fitnesses, fitnesses + numofparticles) - fitnesses;
*gbestfit = minfit;
memcpy(gbest, X[minfitidx], sizeof(float) * numofdims); //设置速度极限
for(int i = 0; i < numofdims; i++)
{
Vmax[i] = 0.2 * (Xmax[i] - Xmin[i]);
Vmin[i] = -Vmax[i];
} for(int t = 0; t < 1000; t++)
{
w = 0.9 - 0.7 * t / numofiterations; //计算个体历史极小值
for(int i = 0; i < numofparticles; i++)
{
if(fitnesses[i] < pbestfits[i])
{
pbestfits[i] = fitnesses[i]; //pbestfits初始化尚未赋值
memcpy(pbests[i], X[i], sizeof(float) * numofdims);
}
}
for(int i = 0; i < numofparticles; i++)
{
for(int j = 0; j < numofdims; j++)
{
V[i][j] = min(max((w * V[i][j] + rand_01 * c1 * (pbests[i][j] - X[i][j])
+ rand_01 * c2 * (gbest[j] - X[i][j])), Vmin[j]), Vmax[j]);
X[i][j] = min(max((X[i][j] + V[i][j]), Xmin[j]), Xmax[j]);
}
} fitnessfunc(X, fitnesses);
//rosenBroekFunc(X, fitnesses);
minfit = *min_element(fitnesses, fitnesses + numofparticles);
minfitidx = min_element(fitnesses, fitnesses + numofparticles) - fitnesses;
if(minfit < *gbestfit)
{
*gbestfit = minfit;
//cout << "It=" << t << "->" << minfit << endl;
memcpy(gbest, X[minfitidx], sizeof(float) * numofdims);
} worsts[t] = *max_element(fitnesses, fitnesses + numofparticles);
bests[t] = *gbestfit;
meanfits[t] = mean(fitnesses, numofparticles);
} } int main()
{
time_t t;
srand((unsigned) time(&t)); float xmin[30], xmax[30];
float initpop[50][30];
float worsts[1000], bests[1000];
float meanfits[1000];
float gbestfit;
float gbest[30];
for(int i = 0; i < 30; i++)
{
xmax[i] = 100;
xmin[i] = -100;
}
for(int i = 0; i < 50; i++)
for(int j = 0; j < 30; j++)
{
initpop[i][j] = rand() % (100 + 100 + 1) - 100;
} PSO(1000, 2, 2, xmin, xmax, initpop, worsts, meanfits, bests, &gbestfit, gbest); cout<<"fitness: " << gbestfit << endl;
for(int i = 0; i < 30; i++)
cout << gbest[i] << ", ";
cout << endl; return 0;
}

版权声明:本文博主原创文章。博客,未经同意不得转载。

一C++PSO(PSO)算法的更多相关文章

  1. 粒子群算法(PSO)算法解析(简略版)

    粒子群算法(PSO) 1.粒子群算法(PSO)是一种基于群体的随机优化技术: 初始化为一组随机解,通过迭代搜寻最优解. PSO算法流程如图所示(此图是从PPT做好,复制过来的,有些模糊) 2.PSO模 ...

  2. 数值计算:粒子群优化算法(PSO)

    PSO 最近需要用上一点最优化相关的理论,特地去查了些PSO算法相关资料,在此记录下学习笔记,附上程序代码.基础知识参考知乎大佬文章,写得很棒! 传送门 背景 起源:1995年,受到鸟群觅食行为的规律 ...

  3. [Algorithm] 群体智能优化算法之粒子群优化算法

    同进化算法(见博客<[Evolutionary Algorithm] 进化算法简介>,进化算法是受生物进化机制启发而产生的一系列算法)和人工神经网络算法(Neural Networks,简 ...

  4. MOPSO 多目标例子群优化算法

    近年来,基于启发式的多目标优化技术得到了很大的发展,研究表明该技术比经典方法更实用和高效.有代表性的多目标优化算法主要有NSGA.NSGA-II.SPEA.SPEA2.PAES和PESA等.粒子群优化 ...

  5. 基于粒子群算法求解求解TSP问题(JAVA)

    一.TSP问题 TSP问题(Travelling Salesman Problem)即旅行商问题,又译为旅行推销员问题.货郎担问题,是数学领域中著名问题之一.假设有一个旅行商人要拜访n个城市,他必须选 ...

  6. 从Random Walk谈到Bacterial foraging optimization algorithm(BFOA),再谈到Ramdom Walk Graph Segmentation图分割算法

    1. 从细菌的趋化性谈起 0x1:物质化学浓度梯度 类似于概率分布中概率密度的概念.在溶液中存在不同的浓度区域. 如放一颗糖在水盆里,糖慢慢溶于水,糖附近的水含糖量比远离糖的水含糖量要高,也就是糖附近 ...

  7. MOPSO 多目标粒子群优化算法

    近年来,基于启发式的多目标优化技术得到了很大的发展,研究表明该技术比经典方法更实用和高效.有代表性的多目标优化算法主要有NSGA.NSGA-II.SPEA.SPEA2.PAES和PESA等.粒子群优化 ...

  8. 曼孚科技:AI算法领域常用的39个术语(上)

    ​算法是人工智能(AI)核心领域之一. 本文整理了算法领域常用的39个术语,希望可以帮助大家更好地理解这门学科. 1. Attention 机制 Attention的本质是从关注全部到关注重点.将有限 ...

  9. 最优化算法——常见优化算法分类及总结

    之前做特征选择,实现过基于群智能算法进行最优化的搜索,看过一些群智能优化算法的论文,在此做一下总结. 在生活或者工作中存在各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题"在一定成 ...

随机推荐

  1. 本地或者服务器同时启动2个或多个tomcat

    一,修改配置文件server.xml的端口 C:\apache-tomcat-5.5.23-1\conf\server.xml用记事本什么的打开修改3个地方   第一: <Server port ...

  2. (转)SWT的CheckBoxTreeViewer的相关用法

    最近在项目中需要用到遍历某个目录下所有文件,并按照树形结构展示,同时还需要提供对树形菜单的选择展开等操作.在eclipse中提供了CheckboxTreeViewer组件来满足所需要的功能 下面是需要 ...

  3. 促销R语言应用性能

    1.       绩效评估 时间的确定 R测量时间是在最简单的方式提供是system.time性能. system.time(expr, gcFirst=TRUE) 这个函数会在不减少程序执行性能的情 ...

  4. PHP socket类

    没事的时候自己封装了一个socket类 功能非常easy和curl功能是一样的 class socketClass{ private $host; private $url; private $err ...

  5. C语言 - printf的占位符(%) 异常

    printf的占位符(%) 异常 本文地址: http://blog.csdn.net/caroline_wendy/article/details/26719135 C语言中, 使用%代表占位符的意 ...

  6. 如何解决Windows8.1(32bit&amp;64bit)下Cisco VPN Client拨号时报442错误的问题

    Cisco VPN Cient大多数网络管理员.技术支持project最流行的教师和最终用户VPNclient一间.对于外部网络访问内部网络,技术类人员. 随着Windows8.1的推出.Cisco ...

  7. 利用sendmsg和recvmsg来指定发送接口或者获取接收数据接口

    前言     sendmsg和recvmsg函数是一对相对下层的套接字发送.接受函数. 通过这对函数,我们能够设置或者取得数据包的一些额外的控制信息.这些信息中比較经常使用的就是本文要介绍的发送.接受 ...

  8. Shiro学习笔记(5)——web集成

    Web集成 shiro配置文件shiroini 界面 webxml最关键 Servlet 測试 基于 Basic 的拦截器身份验证 Web集成 大多数情况.web项目都会集成spring.shiro在 ...

  9. UVA 1513 - Movie collection(树状数组)

    UVA 1513 - Movie collection option=com_onlinejudge&Itemid=8&page=show_problem&category=5 ...

  10. linux 经常使用配置

    教研室用的非常旧的fedora14,装一些软件和下载东西的时候比較蛋疼,恰巧ubuntu14.04 公布,于是安装试试,顺便记录下经常使用的配置,备忘. 1. 制作镜像,比較老的主板,写入方式选择US ...