这是一道最简单的拓扑排序题,好久没看这个算法了!

有点生疏了!

后附上百度的资料;

#include<stdio.h>

#include<string.h>

int in[5000];

char map[3000][3000];

int n;

int panduan()

{


int i,j,k;


for(i=0;i<n;i++)


for(j=0;j<n;j++)


if(map[i][j]=='1')


in[j]++;


for(i=0;i<n;i++)


{


j=0;


while(in[j]!=0)


j++;


if(j==n)


return 0;


else


{


in[j]--;


for(k=0;k<n;k++)


if(map[j][k]=='1')


in[k]--;


}


}


return 1;

}

int main()

{


int t,i,r;


scanf("%d",&t);


r=1;


while(t--)


{


scanf("%d",&n);


memset(in,0,sizeof(in));


getchar();


for(i=0;i<n;i++)


{


scanf("%s",map[i]);


}


printf("Case #%d: ",r++);


if(panduan())


printf("No\n");


else


printf("Yes\n");


}


return 0;

}

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4324

拓扑排序

什么是拓扑序列

通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。简单的说,由某个集合上的一个
偏序得到该集合上的一个
全序,这个操作称之为拓扑排序。离散数学中关于
偏序
全序的定义:
若集合X上的关系是R,且R是自反的、反对称的和传递的,则称R是集合X上的
偏序关系
设R是集合X上的偏序(Partial Order),如果对每个x,y属于X必有xRy 或 yRx,则称R是集合X上的
全序关系
比较简单的理解:偏序是指集合中只有部分成员可以比较,全序是指集合中所有的成员之间均可以比较。
注意:
①若将图中顶点按拓扑次序排成一行,则图中所有的有向边均是从左指向右的。
②若图中存在有向环,则不可能使顶点满足拓扑次序。
③一个DAG的拓扑序列通常表示某种方案切实可行。
一般应用:
拓扑排序常用来确定一个依赖关系集中,事物发生的顺序。例如,在日常工作中,可能会将项目拆分成A、B、C、D四个子部分来完成,但A依赖于B和D,C依赖于D。为了计算这个项目进行的顺序,可对这个关系集进行拓扑排序,得出一个线性的序列,则排在前面的任务就是需要先完成的任务。

实现的基本方法

拓扑排序方法如下:
(1)从
有向图中选择一个没有前驱(即
入度为0)的顶点并且输出它.
(2)从网中删去该顶点,并且删去从该顶点发出的全部有向边.
(3)重复上述两步,直到剩余的网中不再存在没有前趋的顶点为止.

编辑本段拓扑序列 Pascal代码

在计算机语言中的应用:

program TopSort;

var
map,link:array [1..100,1..100] of integer;
v,pnt:array [1..100] of integer;
n,m,a,b,i,j,k:integer;
begin
fillchar(map,sizeof(map),0);
fillchar(link,sizeof(link),0);
fillchar(v,sizeof(v),0);
readln(n,m);
for i:=1 to m do
begin
readln(a,b);
map[a,b]:=1;
v[b]:=v[b]+1;
end;
i:=0;
link:=map;
while (i<n) do
begin
j:=1;
while (v[j]<>0) do inc(j);
v[j]:=-1;
for k:=1 to n do
if link[j,k]=1 then begin dec(v[k]);link[j,k]:=0; end;
inc(i);
pnt[i]:=j;
end;
for i:=1 to n do
writeln(pnt[i]);
end.

拓扑序列 C++核心代码

bool TopologicalSort(int a[][101]) //可以完成拓扑排序则返回True
{
int n = a[0][0], i, j;
int into[101], ans[101];
memset(into, 0, sizeof(into));
memset(ans, 0, sizeof(ans));
for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
{
if (a[i][j] > 0)
into[j]++;
}
}
into[0] = 1;
for (i = 1; i <= n; i++)
{
j = 0;
while (into[j] != 0)
{
j++;
if (j > n)
return false;
}
ans[i] = j;
into[j] = -1;
for (int k = 1; k <= n; k++)
{
if (a[j][k] > 0)
into[k]--;
}
}
for (i = 1; i <= n; i++)
{
cout << ans[i] << " ";
}
cout << endl;
return true;
}

延伸 拓扑学

拓扑学是近代发展起来的一个研究连续性现象的数学分支。中文名称起源于希腊语Τοπολογία的音译。Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于
数学分析的需要而产生的一些
几何问题。发展至今,
拓扑学主要研究
拓扑空间在拓扑变换下的不变性质和不变量。

hdu4324 Triangle LOVE (拓扑排序)的更多相关文章

  1. Triangle LOVE(拓扑排序)

    Triangle LOVE Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/65536K (Java/Other) Total ...

  2. HDU 4324 Triangle LOVE 拓扑排序

    Problem Description Recently, scientists find that there is love between any of two people. For exam ...

  3. HDU4324 Triangle LOVE【拓扑排序】

    Triangle LOVE Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) To ...

  4. hdoj 4324 Triangle LOVE【拓扑排序判断是否存在环】

    Triangle LOVE Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tot ...

  5. HDU - 4324 Triangle LOVE(拓扑排序)

    https://vjudge.net/problem/HDU-4324 题意 每组数据一个n表示n个人,接下n*n的矩阵表示这些人之间的关系,输入一定满足若A不喜欢B则B一定喜欢A,且不会出现A和B相 ...

  6. HDU 4324 Triangle LOVE (拓扑排序)

    Triangle LOVE Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tot ...

  7. HDU 4324 (拓扑排序) Triangle LOVE

    因为题目说了,两个人之间总有一个人喜欢另一个人,而且不会有两个人互相喜欢.所以只要所给的图中有一个环,那么一定存在一个三元环. 所以用拓扑排序判断一下图中是否有环就行了. #include <c ...

  8. hdu 4324 Triangle LOVE(拓扑排序,基础)

    题目 /***************************参考自****************************/ http://www.cnblogs.com/newpanderking ...

  9. hdu4324 拓扑排序

    #include<cstdio> #include<string.h> #define maxn 2013 char M[maxn][maxn]; int du[maxn]={ ...

随机推荐

  1. (转)mvn clean install 与 mvn install 的区别(为啥用clean)

    之前写代码的过程中曾经遇到过问题,用mvn install后,新改的内容不生效,一定要后来使用mvn clean install 才生效,由于之前没有做记录,以及记不清是什么情况下才会出现的问题,于是 ...

  2. JDK5什么是新的线程锁技术(两)

    一个. Lock线程同步实现互斥 Lock比传统线程模型中的synchronized方式更加面向对象,与生活中的锁类似,锁本身也是一个对象. 两个线程运行的代码片段要实现同步相互排斥的效果.他们必须用 ...

  3. Android-管理Activity生命周期

    用户在浏览,退出,返回app时,app中的Activity实例会在不同状态之间切换.比如,当activity第一次启动,然后来到系统前台,受到用户的注意,这个过程中,android系统调用了一系列ac ...

  4. 读书时间《JavaScript高级程序设计》四:BOM,客户端检测

    隔了一段时间,现在开始看第8章. 第8章:BOM BOM提供了很多对象,用于访问浏览器的功能.BOM的核心对象是window,它表示浏览器的一个实例. window对象是通过javascript访问浏 ...

  5. ef添加字段

    先在实体类里添加字段 ,然后执行 Add-Migration updateNumberOfLikes Update-Database -Verbose

  6. Namespace:Openstack的网络实现

    前言:众所周知在linux系统中PID.IPC.Network等都是全局性的资源,不论什么的改动和删减都会对整个系统造成影响.这也是为什么kvm之类的虚拟化技术须要模拟一个完毕主机系统的原因. 可是. ...

  7. C++它tinyXML使用

    tinyXML一个非常好的操作C++图书馆,文件不大,但方法非常丰富.和apache的Dom4j能够披靡啊! 习惯了使用java类库的我看到这么丰富的c++类库,非常高兴!它使用非常easy.仅仅须要 ...

  8. ZipDemo

    package swing.zip; import java.awt.BorderLayout; import java.awt.event.ActionEvent; import java.awt. ...

  9. jsp、Servlet相关知识介绍(转)

    1.servlet生命周期 所谓生命周期,指的是servlet容器如何创建servlet实例.分配其资源.调用其方法.并销毁其实例的整个过程. 阶段一: 实例化(就是创建servlet对象,调用构造器 ...

  10. 百度地图 iOS SDK - 坐标转换方法

    百度地图 Android SDK 要么 iOS SDK 或各种 API 工具产品,我们使用百度自己的加密坐标系. 员在使用过程中,位置点都是通过 GPS 或者其它途径获取的.所以与百度地图所使用的坐标 ...