可以用队列优化或斜率优化的dp这一类的问题为 1D/1D一类问题

即状态数是O(n),决策数也是O(n)

单调队列优化

我们来看这样一个问题:一个含有n项的数列(n<=2000000),求出每一项前面的第m个数到它这个区间内的最小值

可以使用RMQ求区间最小值,那么时间复杂度是O(nlogn),不是让人很满意。

dp[i]为i-m+1->i这个区间的最小值。

那么状态转移方程是

可以看出,这个题目的状态数是O(n),决策数是O(m),且决策的区间是连续的,那么可以尝试想办法把O(m)优化成O(1)

我们可以用单调队列维护一个数据结构,这个数据结构有两个域,pos和val,pos代表下标,val代表该下标所对应的值。队列中的pos单调递增,且val也单调递增

那么当计算一个状态时,只要从队首不断弹出pos<i-m+1的数据,只要pos>=i-m+1,那么该决策就是最优的,因为队列是单调的啊。

同理,同队尾插入一个数据时,只要不断剔除val比a[i]大的数据,直到遇到小于它的,然后将该数据插入队尾。

每个数据只入队列,出队列一次,所以时间复杂度是O(n),

分析:为什么插入的时候,比a[i]大的数据可以剔除,因为j<i时,a[j] > a[i], 那么以后所有的决策中,a[i]都比a[j]更优

  为什么可以不断删除pos<i-m+1的数据,因为i是递增的,该数据对当前的i没用,那么对以后的i也是没用的。

 #include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <iostream>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <math.h>
using namespace std;
#pragma warning(disable:4996)
#pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
const int INF = <<;
/*
*/
const int N = + ;
int a[N];
int dp[N];
int q[N], head, tail;
int main()
{
int n, m;
while (scanf("%d%d", &n,&m) != EOF)
{
for (int i = ; i <= n; ++i)
scanf("%d", &a[i]);
head = tail = ;
q[tail++] = ;
dp[] = a[];
for (int i = ; i <= n; ++i)
{
while (head < tail && a[i] < a[q[tail - ]])//插入新的元素,要使得队列依旧单调递增
tail--;
q[tail++] = i;
while (head < tail && q[head] < i - m + )//剔除不合要求的pos
head++;
dp[i] = a[q[head]];
}
for (int i = ; i <= n; ++i)
printf("%d ", dp[i]);
puts("");
/*
5 3
1 2 3 4 5
1 1 1 2 3
*/
}
return ;
}

那么我们可以抽象出一类模型

需要注意到,上面要求可选的决策集是连续的。同时也可以注意到,当前决策所需要的值是不受现在的状态所影响的,即g(i)与w[x]是相互独立的。

斜率优化

我们在单调队列的最后说道,当前决策所需要的值是不受现在的状态所影响的,即g(i)与w[x]是相互独立的。

还有的1D/1D一类问题是想下面这样的。

但是如果状态转移方程是这样的: dp[i]=dp[j]+(x[i]-x[j])*(x[i]-x[j]) ,1<=j<=i   把括号化开后,得到2x[i]*x[j], 这使得当前决策所需要的值受当前状态的影响

所以上面单调队列的方法就不行了。

hdu3507

题目有n个字符要打印,连续打印k个字符的代价是(c1+c2+...+ck)^2 + m, m是题目所给的常量

题目要优化的是,如果连续打印过多,那么代价平方之后就会很大,如果连续打印过少,那么就多加几次m。

dp[i]表示打印第i个字符时的最小花费

dp[i] = min(dp[i],dp[j] + (sum[i]-sum[j])^2+m)  1<=j<i

那么复杂度是O(n^2),是无法接受的。

那么就需要优化了,

当j > k 且j比k优的时候

dp[j] + (sum[i]-sum[j])^2 + m < dp[k] + (sum[i]-sum[k])^2+m

化简得(dp[j]+sum[j]^2 - (dp[k]+sum[k])^2 )/ (2sum[j]-2sum[k]) < sum[i]

这就很像斜率表达式了,而且这个斜率表达式小于另一个斜率,即sum[i]。

从下图我们可以看出,当j为k优时,斜率为sum[i]的斜线过j点与y轴的截距更小。

令g[j,k]表示上面的式子

当k<j<i时,且g[i,j] <= g[j,k]时,j是可舍弃的。

如果所示,假设j成为最优,那么必须有sum[i] > g[j,k], 且 sum[i] < g[i,j], 即 g[j,k] < sum[i] < g[i,j],  也即有g[i,j] > g[j,k],但是与前提条件g[i,j] <= g[j,k]矛盾,所以假设不成立,所以j是可以舍弃的。

所以,我们要维护一个下凸的图形(即斜率不断增大),因为横坐标(也就是sum[j])是递增的,所以用一个队列维护就行了。如果横坐标不递增的话,就要用平衡树了。

如果,是一个下凸包,我们只要判断sum[i]所代表的斜线与哪个点在y轴上的截距最小就行了,又因为sum[i]是递增的,所以前面判断过的点不用再次判断。

 #include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <iostream>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <math.h>
using namespace std;
#pragma warning(disable:4996)
#pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
const int INF = <<;
/*
普通的dp需要遍历以前的所有值,
斜率dp就是通过舍弃一些值,必须是当前可舍弃,以后也是可舍弃的值,从而减少遍历量
或者是使得队首的元素就是最优的, 关键是如何判断可舍弃,。。。。。通过数学分析斜率来舍弃??? 第i个字符肯定接在前面j个字符的后面,或者另起一行,但是费用该怎么算呢
dp[i][1]表示1另起一行 ,那么费用是 dp[i][1] = ci^2 + m + min(dp[i-1][0],dp[i-1][1])
dp[i][0] 表示接在前面j个字符的后面的最小费用 sum{cost[j]}^2+m + min(dp[j-1][0],dp[j-1][1]) */ const int N = + ;
int sum[N];
int dp[N];
int q[N], head, tail;
int getUp(int i, int j)
{
return dp[i] + sum[i] * sum[i] - (dp[j] + sum[j] * sum[j]);
}
int getDown(int i, int j)
{
return * sum[i] - * sum[j];
}
int main()
{
int n, m;
while (scanf("%d%d", &n, &m) != EOF)
{
for (int i = ; i <= n; ++i)
{
scanf("%d", &sum[i]);
sum[i] += sum[i - ];
}
head = tail = ;
q[tail++] = ;
for (int i = ; i <= n; ++i)
{
/* */
while (head + < tail && getUp(q[head + ], q[head]) <= sum[i] * getDown(q[head + ], q[head ]))
head++;
dp[i] = (sum[i] - sum[q[head]]) * (sum[i] - sum[q[head]]) + m + dp[q[head]];
while (head + < tail && getUp(i, q[tail - ])*getDown(q[tail - ], q[tail - ]) <= getUp(q[tail - ], q[tail - ])*getDown(i, q[tail - ]))
tail--;
q[tail++] = i;
}
printf("%d\n", dp[n]);
}
return ;
}

总结,

当横坐标递增,斜率递增时,用队列维护,可以在O(1)的时间内找到最优值,就是上面的情况。

当横坐标递增,斜率不递增时,我们可以二分,因为凸包的斜率是递增的,所以可以二分。

当横坐标不递增时,用平衡树维护。

【参考文献】

《1D1D动态规划优化初步》 作者:南京师范大学附属中学 汪一宁

《用单调性优化动态规划》   JSOI2009集训队论文

《斜率优化dp》

队列优化和斜率优化的dp的更多相关文章

  1. 斜率优化dp练习

    1.HDU3507 裸题,有助于理解斜率优化的精髓. dp[i]=min(dp[j]+m+(sum[i]-sum[j])2) 很显然不是单调队列. 根据斜率优化的的定义,就是先设两个决策j,k 什么时 ...

  2. 【学习笔记】动态规划—斜率优化DP(超详细)

    [学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...

  3. P3195 [HNOI2008]玩具装箱TOY 斜率优化dp

    传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...

  4. 斜率优化DP复习笔记

    前言 复习笔记2nd. Warning:鉴于摆渡车是普及组题目,本文的难度定位在普及+至省选-. 参照洛谷的题目难度评分(不过感觉部分有虚高,提高组建议全部掌握,普及组可以选择性阅读.) 引用部分(如 ...

  5. CF 319C - Kalila and Dimna in the Logging Industry 斜率优化DP

    题目:伐木工人用电锯伐木,一共需要砍n棵树,每棵树的高度为a[i],每次砍伐只能砍1单位高度,之后需要对电锯进行充电,费用为当前砍掉的树中最大id的b[id]值.a[1] = 1 , b[n] = 0 ...

  6. [bzoj 2726] 任务安排 (斜率优化 线性dp)

    3月14日第三题!!!(虽然是15号发的qwq) Description 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3-N.这N个任务被分成若干批 ...

  7. bzoj 1010 玩具装箱toy -斜率优化

    P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具 ...

  8. 【BZOJ3156】防御准备(动态规划,斜率优化)

    [BZOJ3156]防御准备(动态规划,斜率优化) 题面 BZOJ 题解 从右往左好烦啊,直接\(reverse\)一下再看题. 设\(f[i]\)表示第\(i\)个位置强制建立检查站时,前面都满足条 ...

  9. Bzoj1492: [NOI2007]货币兑换Cash(不单调的斜率优化)

    题面 传送门 Sol 题目都说了 必然存在一种最优的买卖方案满足: 每次买进操作使用完所有的人民币: 每次卖出操作卖出所有的金券. 设\(f[i]\)表示第\(i\)天可以有的最大钱数 枚举\(j&l ...

随机推荐

  1. DM8168硬件平台

    DM8168硬件平台  作者:Marvin_wu TMS320DM8168是一款多核SoC,它集成了包含ARM Cortex A8.DSP C674X+.M3 VIDEO.M3 VPSS等处理器.DS ...

  2. Tomcat启动会遇到的问题部分解决方案

    Tomcat的启动不一定会非常的顺利,这可以有多种原因 一.Tomcat是由Java所编写的,因此Tomcat的使用需要JDK的支持,如果没有配置环境变量,Tomcat当然无法启动,最明显的特征就是点 ...

  3. [置顶] 强大的JQuery

    JQuery初识 为了简化JS的开发,一些JS库诞生了,JQuery就是其中的一个.JQuery是一个兼容多浏览器的Javascript框架.是轻量级的JS库.jQuery为用户提供了丰富的文档说明, ...

  4. ruby语言仅仅是昙花一现

    Ruby语言本身存在非常久了,在国内一直没火过.非常多人仅仅是知道有这样的语言,会的人少之又少.不论什么一种语言坚持十来年的发展,变得越来越好,一定有它不平常的地方.不能任意的去比較语言本身的好与坏. ...

  5. Web API设计

    Web API设计经验与总结 在移动互联网的时代, Web服务已经成为了异构系统之间的互联与集成的主要手段,各种 Web服务几乎都采用REST风格的Web Api来构建. 通过Http协议的形式来. ...

  6. GrabCut--Opencv篇

    最近因为工作需要,需要实现一个Grabcut函数.Opencv已经提供此函数,今天把opencv的例程拿出来跑了一下,对于简单的背景实现效果还不错. OpenCV中的GrabCut算法是依据<& ...

  7. sqlplus连接登录数据库时,出现 ORA-28009错误(转)

    安装了oracle10g,打算用SQLPLUS 登录数据库进行操作.打开sqlplus后,可以看到要求输入用户名,口令和主机字符串.前面两个都知道,但是后一个却不明白,查了资料才知道是安装时的全局数据 ...

  8. osgEarth开发之OSG解构——失败的尝试

    概述 本文在吸收了<最长的一帧>以及相关参考资料的基础之上解读OSG的基础数据结构,渲染方法. 实现 在这第一部分里,要理解的是run函数的实现,因为以下这一段证明了它的重要性和强大的能力 ...

  9. 改动Oracle GoldenGate(ogg)各个进程的读检查点和写检查点

    请注意:请谨慎改动Oracle GoldenGate(ogg)各个进程的读检查点和写检查点. 请确保已经 掌握 ogg 各个进程的读检查点和写检查点的详细含义. BEGIN {NOW | yyyy-m ...

  10. [C++]函数参数浅析

    Date:2014-1-9 Summary: 函数参数相关记录 Contents:1.形参实参 形参:用于接收值的变量被称为形参 实参:传递给函数的值被称为实参 2.函数的参数传递之后2种 a).值传 ...