链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695

题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少。(a=1, a <= b <= 100000, c=1, c <= d <= 100000, 0 <= k <= 100000)

思路:由于x与y的最大公约数为k,所以xx=x/k与yy=y/k一定互质。要从a/k和b/k之中选择互质的数,枚举1~b/k,当选择的yy小于等于a/k时,能够选择的xx数为Euler(yy),当yy大于a/k时,就要用容斥原理来找到yy的质因数,在a/k范围内找到与yy互质的数。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <map>
#include <cstdlib>
#include <queue>
#include <stack>
#include <vector>
#include <ctype.h>
#include <algorithm>
#include <string>
#include <set>
#include <ctime>
#define PI acos(-1.0)
#define maxn 1<<20
#define INF 0x7fffffff
#define eps 1e-8
typedef long long LL;
typedef unsigned long long ULL;
using namespace std;
LL ans=0;
LL S=0;
LL sum2;
LL euler[100050];
void init()
{
memset(euler,0,sizeof(euler));
euler[1] = 1;
for(int i = 2; i <= 100000; i++)
if(!euler[i])
for(int j = i; j <= 100000; j += i)
{
if(!euler[j])
euler[j] = j;
euler[j] = euler[j]/i*(i-1);
}
}
void factor(int n,int a[maxn],int b[maxn],LL &tt)
{
int temp,i,now;
temp=(int)((double)sqrt(n)+1);
tt=0;
now=n;
for(i=2; i<=temp; i++)
{
if(now%i==0)
{
a[++tt]=i;
b[tt]=0;
while(now%i==0)
{
++b[tt];
now/=i;
}
}
}
if(now!=1)
{
a[++tt]=now;
b[tt]=1;
}
}
int dfs(int aa[],int pos,int res,int sum,int b,int tot)//res乘积,sum乘数的个数
{
if(pos+1<=tot)
dfs(aa,pos+1,res,sum,b,tot);
sum++;
res*=aa[pos];
if(sum%2)
sum2+=b/res;
else
sum2-=b/res;
if(pos+1<=tot)
dfs(aa,pos+1,res,sum,b,tot);
return 0;
}
int main()
{
int T,tt=0,aa[40],bb[40];
init();
while(~scanf("%d",&T))
{
tt=0;
while(T--)
{
tt++;
int a,b,c,d,k;
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("Case %d: ",tt);
if(k==0)
{
printf("0\n");
continue;
}
if(d<b)
swap(b,d);
b/=k;
d/=k;
if(!b)
{
printf("0\n");
continue;
}
ans=0;
for(int i=1; i<=b; i++)
ans+=euler[i];
for(int i=b+1; i<=d; i++)
{
sum2=0;
factor(i,aa,bb,S);
dfs(aa,1,1,0,b,S);
ans+=b-sum2;
}
printf("%I64d\n",ans);
}
}
return 0;
}

HDU 1695 GCD 欧拉函数+容斥原理+质因数分解的更多相关文章

  1. hdu 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  2. HDU 1695 GCD (欧拉函数,容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  3. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

  4. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. hdu 1695 GCD 欧拉函数 + 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K]  和 [L ...

  6. HDU 2588 GCD (欧拉函数)

    GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status De ...

  7. [hdu1695] GCD ——欧拉函数+容斥原理

    题目 给定两个区间[1, b], [1, d],统计数对的个数(x, y)满足: \(x \in [1, b]\), \(y \in [1, d]\) ; \(gcd(x, y) = k\) HDU1 ...

  8. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  9. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. [SVN]常见问题的解决方案

    Date:2014-1-3 Summary: SVN使用的一些常见问题解决方案记录,来源Internet,本人亲测 Contents: 1.回滚自己的分支到某一个版本 $svn merge -r rH ...

  2. JAVA NIO 选择器

    为什么要使用选择器 通道处于就绪状态后,就可以在缓冲区之间传送数据.可以采用非阻塞模式来检查通道是否就绪,但非阻塞模式还会做别的任务,当有多个通道同时存在时,很难将检查通道是否就绪与其他任务剥离开来, ...

  3. java中super()和this()浅析

    <span style="font-size:18px;">本质:这两个都是调用构造方法的方法.</span> 在java中,super()是在当前类的构造 ...

  4. STL学习总结

    STL就是Standard Template Library,标准模板库.这可能是一个历史上最令人兴奋的工具的最无聊的术语.从根本上说,STL是一些"容器"的集合.这些" ...

  5. UDP vs. TCP

    UDP vs. TCP 原文:UDP vs. TCP,作者是Glenn Fiedler,专注于游戏网络编程相关工作多年. 说在最前面的话 翻译这篇文章的初衷:我在工作中根本接触不到网络游戏编程,但是我 ...

  6. Oracle GoldenGate for Oracle 11g to PostgreSQL 9.2.4 Configuration

    Installing and setting up Oracle GoldenGate connecting to an Oracle database Also please make sure t ...

  7. poj 2201 构造

    这个题目的构造方法应该还算是很好想的,先给a按照从小到大排序,然后按顺序插入数据,构造一棵二叉查找树,而且50000的数据,nlogn的做法,应该还是很好的.不过这个题目的编码比想象中要麻烦一点,并且 ...

  8. IBM之MQ使用指南

    随着计算机网络和分布式应用的不断发展.远程消息传递越来越成为应用系统中必不可少的组成部分. 商业消息中间件的出现保证了消息传输的可靠性,高效率和安全性,同一时候也降低了系统的开发周期. 眼下应用最多的 ...

  9. Android 检測网络是否连接

    权限: <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>  <u ...

  10. [Unity3D]Unity3D游戏开发之ACT游戏三连击效果实现综述

    各位朋友,大家好,我是秦元培,欢迎大家关注我的博客,我的博客地址是blog.csdn.net/qinyuanpei.在研究了Unity3D Mecanim动画系统的重定向特性后,今天我们继续来探索Me ...