「PKUWC2018」猎人杀
「PKUWC2018」猎人杀
解题思路
首先有一个很妙的结论是问题可以转化为已经死掉的猎人继续算在概率里面,每一轮一直开枪直到射死一个之前没死的猎人为止。
证明,设所有猎人的概率之和为 \(W\) ,当前已经死掉了概率之和为 \(T\) 的猎人,原问题下一个射死 \(i\) 的概率 \(P\) 为
\]
转化过后的问题下一个射死 \(i\) 的概率为
\dfrac{W-T}{W}P=\dfrac{w_i}{W} \\
P=\dfrac{w_i}{W-T}
\]
两个问题的概率是一样的。
然后考虑经典容斥,钦定一个不包含 \(1\) 的猎人集合 \(S\) 在 \(1\) 之后被射死,用 \(sum(S)\) 表示这个猎人集合的 \(w_i\) 之和,那么答案就是:
\]
考虑到 \(\sum_{i=0}^{\infty}(1-\dfrac{sum(S)+w_1}{W})^i\) 是收敛的,所以
Ans = w_1\sum _{S}\dfrac{(-1)^{|S|}}{sum(S)+w_1}
\]
构造生成函数 \([x^n]F(x)\) 为 \(sum(S)=n\) 的所有方案的 \((-1)^{|S|}\) 之和,那么有
Ans = w_1\sum_{i=0}^{W-w_1}\dfrac{[x^i]F(x)}{i+w_1}
\]
因为 \(\sum w_i\) 不大,分治 NTT 求解即可,复杂度 \(\mathcal O(n \log^2 n)\),可以对这个式子 \(\ln\) 一下再考虑泰勒展开形式把有用的项记下来 \(\exp\) 回去,估计跑不过两个 \(\log\)。
code
/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int ch = 0, f = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
const int N = (1 << 21), P = 998244353, G = 3;
namespace poly{
int rev[N], len, lg;
inline int Pow(int a, int b){
int ans = 1;
for(; b; b >>= 1, a = 1ll * a * a % P)
if(b & 1) ans = 1ll * ans * a % P;
return ans;
}
inline void timesinit(int lenth){
for(len = 1, lg = 0; len <= lenth; len <<= 1, lg++);
for(int i = 0; i < len; i++)
rev[i] = (rev[i>>1] >> 1) | ((i & 1) << (lg - 1));
}
inline void DFT(int *a, int sgn){
for(int i = 0; i < len; i++)
if(i < rev[i]) swap(a[i], a[rev[i]]);
for(int k = 2; k <= len; k <<= 1){
int w = Pow(G, (P - 1) / k);
if(sgn == -1) w = Pow(w, P - 2);
for(int i = 0; i < len; i += k){
int now = 1;
for(int j = i; j < i + (k >> 1); j++){
int x = a[j], y = 1ll * now * a[j+(k>>1)] % P;
a[j] = x + y >= P ? x + y - P : x + y;
a[j+(k>>1)] = x - y < 0 ? x - y + P : x - y;
now = 1ll * now * w % P;
}
}
}
if(sgn == -1){
int INV = Pow(len, P - 2);
for(int i = 0; i < len; i++) a[i] = 1ll * a[i] * INV % P;
}
}
}
using poly::Pow;
using poly::DFT;
using poly::timesinit;
int a[N], b[N], w[N], n;
inline vector<int> solveNTT(int l, int r){
if(l == r){
vector<int> vec;
vec.resize(w[l] + 1), vec[0] = 1, vec[w[l]] = P - 1;
return vec;
}
int mid = (l + r) >> 1;
vector<int> A = solveNTT(l, mid);
vector<int> B = solveNTT(mid + 1, r);
int lenth = (int) A.size() + (int) B.size() - 1;
for(int i = 0; i < (int) A.size(); i++) a[i] = A[i];
for(int i = 0; i < (int) B.size(); i++) b[i] = B[i];
timesinit(lenth);
DFT(a, 1), DFT(b, 1);
for(int i = 0; i < poly::len; i++) a[i] = 1ll * a[i] * b[i] % P;
DFT(a, -1);
vector<int> vec;
for(int i = 0; i < lenth; i++) vec.push_back(a[i]);
for(int i = 0; i < poly::len; i++) a[i] = b[i] = 0;
return vec;
}
int main(){
read(n);
if(n == 1) return puts("1"), 0;
for(int i = 1; i <= n; i++) read(w[i]);
vector<int> ans = solveNTT(2, n);
int Ans = 0;
for(int i = 0; i < (int) ans.size(); i++)
(Ans += 1ll * ans[i] * Pow(i + w[1], P - 2) % P) %= P;
cout << 1ll * w[1] * Ans % P << endl;
return 0;
}
「PKUWC2018」猎人杀的更多相关文章
- 【LOJ】#2541. 「PKUWC2018」猎人杀
题解 一道神仙的题>< 我们毙掉一个人后总的w的和会减少,怎么看怎么像指数算法 然而,我们可以容斥-- 设\(\sum_{i = 1}^{n} w_{i} = Sum\) 我们把问题转化一 ...
- [LOJ2541]「PKUWC2018」猎人杀
loj description 有\(n\)个猎人,每个猎人有一个仇恨度\(w_i\),每个猎人死后会开一枪打死一个还活着的猎人,打中每个猎人的概率与他的仇恨度成正比. 现在你开了第一枪,打死每个猎人 ...
- loj2541 「PKUWC2018」猎人杀 【容斥 + 分治NTT】
题目链接 loj2541 题解 思路很妙啊, 人傻想不到啊 觉得十分难求,考虑容斥 由于\(1\)号可能不是最后一个被杀的,我们容斥一下\(1\)号之后至少有几个没被杀 我们令\(A = \sum\l ...
- loj#2541. 「PKUWC2018」猎人杀
传送门 思路太清奇了-- 考虑容斥,即枚举至少有哪几个是在\(1\)号之后被杀的.设\(A=\sum_{i=1}^nw_i\),\(S\)为那几个在\(1\)号之后被杀的人的\(w\)之和.关于杀了人 ...
- LOJ #2541「PKUWC2018」猎人杀
这样$ PKUWC$就只差一道斗地主了 假装补题补完了吧..... 这题还是挺巧妙的啊...... LOJ # 2541 题意 每个人有一个嘲讽值$a_i$,每次杀死一个人,杀死某人的概率为$ \fr ...
- LOJ2541. 「PKUWC2018」猎人杀 [概率,分治NTT]
传送门 思路 好一个神仙题qwq 首先,发现由于一个人死之后分母会变,非常麻烦,考虑用某种方法定住分母. 我们稍微改一改游戏规则:一个人被打死时只打个标记,并不移走,也就是说可以被打多次但只算一次.容 ...
- LOJ 2541 「PKUWC2018」猎人杀——思路+概率+容斥+分治
题目:https://loj.ac/problem/2541 看了题解才会……有三点很巧妙. 1.分母如果变动,就很不好.所以考虑把操作改成 “已经选过的人仍然按 \( w_i \) 的概率被选,但是 ...
- LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)
题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
随机推荐
- Java中多个异常的捕获顺序(多个catch)
import java.io.IOException; public class ExceptionTryCatchTest { public void doSomething() throws IO ...
- Codeforces Round #540 Tanya and Candies 预处理
http://codeforces.com/contest/1118/problem/B 题目大意,给你一个序列,删去一个数值之后,要求剩下序列奇数和偶数的和相同,问有多少种删法. 思路:预处理奇数和 ...
- Mogodb 学习一
0.MongoDB和关系型数据的几个重要对象对比 MongoDB中的数据库.集合.文档 类似于关系型数据库中的数据库.表.行 MongoDB中的集合是没有模式的,所以可以存储各种各样的文档 1.启动M ...
- ie6下的line-height属性
line-height这个属性是被ie6所支持的. 当是当一个父级元素内的子元素,包含了文字,且文字和img,input,label,span这些内联元素连接在一起的时候,你对父级元素设置line-h ...
- asp.net分页之AJAX 分页
查询功能是开发中最重要的一个功能,大量数据的显示,我们用的最多的就是分页. 在ASP.NET 中有很多数据展现的控件,比如Repeater.GridView,用的最多的GridView,它同时也自带了 ...
- 银行卡号码校验算法(Luhn算法,又叫模10算法)
有时候在网上办理一些业务时有些需要填写银行卡号码,当胡乱填写时会立即报错,但是并没有发现向后端发送请求,那么这个效果是怎么实现的呢. 对于银行卡号有一个校验算法,叫做Luhn算法. 一.银行卡号码的校 ...
- 字符串对象的charAt函数存在的意义
var style = ""; style[0] //undefined var style = ""; style.charAt(0); //"&q ...
- 【前端开发】关于闭包最通俗易懂的解释 for循环,定时器,闭包混合一块的那点事。
for循环,定时器,闭包混合一块的那点事. 1,对于一个基本的for循环,顺序输出变量值. for(var i = 1; i < 4; i++){ console.log(i);//结果不多说了 ...
- Flask 目录
flask入门 flask 源码剖析 Flask session Flask form
- 【OOB】MSHTML!CPasteCommand::ConvertBitmaptoPng heap-based buffer overflow学习
IE 11 MSHTML!CPasteCommand::ConvertBitmaptoPng heap-based buffer overflow学习 MS14-056, CVE-2014-41 ...