今天,我们来学习如何设计自定义位置的相机

ready

我们只需要了解我们之前的坐标体系,或者说是相机位置

先看效果

  Chapter10:Positionable camera

这一章我们直接用概念贯穿整章

1.fov: field of view

它是一个角度

它分为两种:垂直方向岔开的角度(vfov)和水平方向岔开的角度(hfov)

vfov即相机在垂直方向上从屏幕顶端扫描到底部所岔开的视角角度

hfov即相机在水平方向上从屏幕左端扫描到右端所岔开的视角角度

2.aspect:屏幕宽高比

我们之前是通过直接定义屏幕的坐标位置来确定屏幕,现在,我们可以通过相机参数来确定屏幕

目前,我们暂时还用ready中的坐标,相机在原点,屏幕中心在(0,0,-1)

我们习惯采用vfov,这里我们假设一直vfov和aspect

眼睛离屏幕中心的距离为dis(也就是1)

根据 tan(vfov/2) = (屏幕高/2)/dis

得到 屏幕高 = 2 * dis * tan(vfov/2)

则,屏幕上边界为 y_up = dis * tan(vfov/2)

  屏幕下边界为 y_bottom = - y_up 

屏幕宽 = 屏幕高 * aspect

则,屏幕左边界为 x_left = - 屏幕宽/2

  屏幕右边界为 x_right = - x_left

所以,我们目前的相机类如下:

/// camera.h

// -----------------------------------------------------
// [author] lv
// [begin ] 2019.1
// [brief ] the camera-class for the ray-tracing project
// from the 《ray tracing in one week》
// ----------------------------------------------------- #ifndef CAMERA_H
#define CAMERA_H #include "ray.h" namespace rt
{ class camera
{
public:
camera(rtvar vfov, rtvar aspect)
:_eye(rtvec(.,.,.))
{
rtvar theta = vfov * π / ;
rtvar half_height = tan(theta / );
rtvar half_width = aspect * half_height;
_start = rtvec(-half_width, -half_height, -1.0);
_horizontal = rtvec( * half_width, ., .);
_vertical = rtvec(., * half_height, .);
} inline const ray get_ray(const rtvar u,const rtvar v)const
{ return ray{ _eye, _start + u*_horizontal + v*_vertical }; } inline const ray get_ray(const lvgm::vec2<rtvar>& para)const
{ return ray{_eye, _start + para.u()*_horizontal + para.v()*_vertical}; } inline const rtvec& eye()const { return _eye; } inline const rtvec& start()const { return _start; } inline const rtvec& horizontal()const { return _horizontal; } inline const rtvec& vertical()const { return _vertical; } private:
rtvec _eye; rtvec _start; //left-bottom rtvec _horizontal; rtvec _vertical; }; } #endif

同时,我们如下设置main的相关数据,先来测试一下

Lambertian(rtvec(0,0,1))过滤red和green,完全保留blue

得到如下图:

没问题吧,屏幕宽为4,高为2,两边少的部分是被视锥体切掉了

从原点往左右边界连线,左三角面和右三角面内的部分才可见

3.lookfrom:相机所在位置

4.lookat:相机视线指向的位置点

相机在lookfrom位置看向lookat点

5.相机平面

相机平面是过lookfrom垂直于视线(from->at)的一个平面

类似于坐标系,确定平面当然也需要正交基向量,而相机三维正交基一般采用uvw坐标系

一个个描述

在阐述uvw之前先确定一个正向上的向量,因为相机坐标系算是一个局部性质的,当我们把它放在世界坐标系中,就需要用一个始终指向世界坐标系正上方的基向量vup(view up)

我们现在来确定三维正交相机坐标系

我们先来确定w,w是一个正交于相机平面的基向量

它的定义为 w = lookfrom - lookat 

即:与视线反向的一个基向量

有了w,我们便可以定义u了,u向量代表相机平面的水平向量

u一定平行于世界坐标系的x轴

vup平行于世界坐标系的y轴

所以u⊥vup

而w⊥相机平面,所以w⊥u

所以  u = vup × w   该体系为右手系

最后定义v,v就是相机平面的垂直方向

即, v = w × u 

所以,我们可以定义一个完整的camera类啦

构造函数改动如下:

我们试着,站在(-2,2,1)位置,往屏幕中心(0,0,-1)看

它应该是一张俯瞰图

主函数:

如图:

左边的金属球只反射光蓝色分量,右边的漫反射球只反射光的红色分量

至于蓝色的金属球下部是黑色的,只能解释为下部的反射光中蓝色成分比较少

所以,过了这一节,我们的镜头就可以远近上下左右调整了,屏幕也随时跟着相机动,为相机影像做投影

是不是非常激动

前面那张效果图是如下设置的,球的性质改了一下,且把相机拉近了些(感觉书上的距离太远了)

感谢您的阅读,生活愉快~

【Ray Tracing in One Weekend 超详解】 光线追踪1-8 自定义相机设计的更多相关文章

  1. 【Ray Tracing The Next Week 超详解】 光线追踪2-9

    我们来整理一下项目的代码 目录 ----include --hit --texture --material ----RTdef.hpp ----ray.hpp ----camera.hpp ---- ...

  2. 【Ray Tracing The Next Week 超详解】 光线追踪2-6 Cornell box

    Chapter 6:Rectangles and Lights 今天,我们来学习长方形区域光照  先看效果 light 首先我们需要设计一个发光的材质 /// light.hpp // ------- ...

  3. 【Ray Tracing in One Weekend 超详解】 光线追踪1-4

    我们上一篇写了Chapter5 的第一个部分表面法线,那么我们来学剩下的部分,以及Chapter6. Chapter5:Surface normals and multiple objects. 我们 ...

  4. 【Ray Tracing The Next Week 超详解】 光线追踪2-7 任意长方体 && 场景案例

    上一篇比较简单,很久才发是因为做了一些好玩的场景,后来发现这一章是专门写场景例子的,所以就安排到了这一篇 Preface 这一篇要介绍的内容有: 1. 自己做的光照例子 2. Cornell box画 ...

  5. 【Ray Tracing The Next Week 超详解】 光线追踪2-8 Volume

     Preface 今天有两个东东,一个是体积烟雾,一个是封面图 下一篇我们总结项目代码 Chapter 8:Volumes 我们需要为我们的光线追踪器添加新的物体——烟.雾,也称为participat ...

  6. 【Ray Tracing The Next Week 超详解】 光线追踪2-5

    Chapter 5:Image Texture Mapping 先看效果: 我们之前的纹理是利用的是撞击点p处的位置信息,比如大理石纹理 而我们今天的图片映射纹理采用2D(u,v)纹理坐标来进行. 在 ...

  7. 【Ray Tracing The Next Week 超详解】 光线追踪2-4 Perlin noise

     Preface 为了得到更好的纹理,很多人采用各种形式的柏林噪声(该命名来自于发明人 Ken Perlin) 柏林噪声是一种比较模糊的白噪声的东西:(引用书中一张图) 柏林噪声是用来生成一些看似杂乱 ...

  8. 【Ray Tracing The Next Week 超详解】 光线追踪2-3

     Preface 终于到了激动人心的纹理章节了 然鹅,看了下,并不激动 因为我们之前就接触过 当初有一个 attenuation 吗? 对了,这就是我们的rgb分量过滤器,我们画出的红色.蓝色.绿色等 ...

  9. 【Ray Tracing The Next Week 超详解】 光线追踪2-2

    Chapter 2:Bounding Volume Hierarchies 今天我们来讲层次包围盒,乍一看比较难,篇幅也多,但是咱们一步一步来,相信大家应该都能听懂 BVH 和 Perlin text ...

随机推荐

  1. 在kubernetes集群中创建redis主从多实例

    分类 > 正文 在kubernetes集群中创建redis主从多实例 redis-slave镜像制作 redis-master镜像制作 创建kube的配置文件yaml 继续使用上次实验环境 ht ...

  2. Python微信红包算法

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  3. java8 使用 lamda 表达式 完成 map reduce

    java8支持了函数编程,可以让java代码更简洁和易读. 传统 for 循环方式: List<String> list = Arrays.asList("C",&qu ...

  4. 阿里云(一)云存储OSS的命令行osscmd的安装和使用

    一.安装Python 在Linux Shell里验证Python版本: $ python -V Python 2.7.10 二.安装OSScmd SDK osscmd是基于python 2.5.4(其 ...

  5. .NET面试题系列(六)多线程

    1.多线程的三个特性:原子性.可见性.有序性 原子性:是指一个操作是不可中断的.即使是多个线程一起执行的时候,一个操作一旦开始,就不会被其他线程干扰. 比如,对于一个静态全局变量int i,两个线程同 ...

  6. 移动option标签

    <%@ page language="java" pageEncoding="UTF-8"%> <%@taglib uri="/st ...

  7. HDU 4502 吉哥系列故事——临时工计划(一维动态规划)

    题意:吉哥的假期是1到n天,然后有m个工作可以让吉哥选择做,每个工作都有一个开始 t_s  和结束的时间   t_e ,都用天来表示,然后每个工作必须从第一天做到最后一天, 从头到尾做完之后就可以得到 ...

  8. Contrastive Loss (对比损失)

    参考链接:https://blog.csdn.net/yanqianglifei/article/details/82885477 https://blog.csdn.net/qq_37053885/ ...

  9. MFC小型工具通用界面框架CLIST控件+右键菜单功能

    MFC-小型工具通用界面框架 0x1 场景 由于工作需要我会写代码开发工具给客户或者同事用.代码都能实现,但写个黑乎乎的命令行工具给别人用确实显得不够专业,用别人写好的成型工具又担心有后门. 所以掌握 ...

  10. MySQL 5.6 Replication 复制 FAQ

    原文请参照MySQL官方文档Reference Manual,版本5.6.10. 复制功能使得数据可以从一个MySQL数据库(master主库)复制到另一个或多个MySQL数据库(slave从库).缺 ...