Cutting Tree

题目连接:

https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4922

Description

Tree in graph theory refers to any connected graph (of nodes and edges) which has no simple cycle,

while forest corresponds to a collection of one or more trees. In this problem, you are given a forest of

N nodes (of rooted trees) and K queries. Each query is in the form of:

• C x : remove the edge connecting node and its parent. If node has no parent, then ignore this

query.

• Q a b : output ‘YES’ if there is a path from node to node in the forest; otherwise, ‘NO’.

For example, let the initial forest is shown by Figure 1.

Figure 1. Figure 2.

Let’s consider the following queries (in order):

  1. Q 5 7 : output YES.
  2. C 2 : remove edge (2, 1) — the resulting forest is shown in Figure 2.
  3. Q 5 7 : output NO, as there is no path from node 5 to node 7 in Figure 2.
  4. Q 4 6 : output YES.

Input

The first line of input contains an integer T (T ≤ 50) denoting the number of cases. Each case begins

with two integers: N and K (1 ≤ N ≤ 20, 000; 1 ≤ K ≤ 5, 000) denoting the number of nodes in the

forest and the number of queries respectively. The nodes are numbered from 1 to N. The next line

contains N integers Pi (0 ≤ Pi ≤ N) denoting the parent of i-th node respectively. Pi = 0 means that

node i does not have any parent (i.e. it’s a root of a tree). You are guaranteed that the given input

corresponds to a valid forest. The next K lines represent the queries. Each query is in the form of ‘C

x’ or ‘Q a b’ (1 ≤ x, a, b ≤ N), as described in the problem statement above

Output

For each case, output ‘Case #X:’ in a line, where X is the case number starts from 1. For each ‘Q

a b’ query in the input, output either ‘YES’ or ‘NO’ (without quotes) in a line whether there is a path

from node a to node b in the forest.

Explanation for 2nd sample case:

The initial forest is shown in Figure 3 below.

  1. C 3 : remove edge (3, 2) — the resulting forest is shown in Figure 4.
  2. Q 1 2 : output YES.
  3. C 1 : remove edge (1, 2) — the resulting forest is shown in Figure 5.
  4. Q 1 2 : output NO as there is no path from node 1 to node 2 in Figure 5

Sample Input

4

7 4

0 1 1 2 2 2 3

Q 5 7

C 2

Q 5 7

Q 4 6

4 4

2 0 2 3

C 3

Q 1 2

C 1

Q 1 2

3 5

0 3 0

C 1

Q 1 2

C 3

C 1

Q 2 3

1 1

0

Q 1 1

Sample Output

Case #1:

YES

NO

YES

Case #2:

YES

NO

Case #3:

NO

YES

Case #4:

YES

Hint

题意

给你个森林,俩操作,1是砍掉与他父亲的连边,2是查询xy是否在同一个连通块里面

题解:

倒着做,砍边就变成连边了,然后并茶几莽一波就好了

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e4+7;
int cas = 0;
int fa[maxn];
int e[maxn];
int flag[maxn];
int a[maxn],b[maxn],c[maxn];;
int fi(int x){
if(x==fa[x])return x;
return fa[x]=fi(fa[x]);
}
void init(){
memset(flag,0,sizeof(flag));
}
void solve(){
init();
vector<int>ans;
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
fa[i]=i;
for(int i=1;i<=n;i++)
scanf("%d",&e[i]);
for(int i=1;i<=m;i++){
string s;cin>>s;
if(s[0]=='C'){
a[i]=1;
scanf("%d",&b[i]);
flag[b[i]]++;
}else{
a[i]=0;
scanf("%d%d",&b[i],&c[i]);
}
}
for(int i=1;i<=n;i++){
if(flag[i]==0&&e[i]!=0){
fa[fi(i)]=fi(e[i]);
}
}
for(int i=m;i>=1;i--){
if(a[i]==1){
flag[b[i]]--;
if(flag[b[i]]==0&&e[b[i]]!=0)
fa[fi(b[i])]=fi(e[b[i]]);
}else{
if(fi(b[i])==fi(c[i]))ans.push_back(1);
else ans.push_back(0);
}
}
for(int i=ans.size()-1;i>=0;i--){
if(ans[i])printf("YES\n");
else printf("NO\n");
}
}
int main(){
//freopen("1.txt","r",stdin);
int t;
scanf("%d",&t);
while(t--){
printf("Case #%d:\n",++cas);
solve();
}
return 0;
}

UVALive 6910 Cutting Tree 并查集的更多相关文章

  1. uva 6910 - Cutting Tree 并查集的删边操作,逆序

    https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...

  2. UVALive 6910 Cutting Tree(离线逆序并查集)

    [题目]:(地址:) http://acm.hust.edu.cn/vjudge/contest/view.action?cid=97671#problem/E [题意]: 给出多棵树和两类操作:操作 ...

  3. UVALive 6910 Cutting Tree(并查集应用)

    总体来说,这个题给的时间比较长,样例也是比较弱的,别的方法也能做出来. 我第一次使用的是不合并路径的并查集,几乎是一种暴力,花了600多MS,感觉还是不太好的,发现AC的人很多都在300MS之内的过得 ...

  4. Hdu.1325.Is It A Tree?(并查集)

    Is It A Tree? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  5. Is It A Tree?(并查集)

    Is It A Tree? Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26002   Accepted: 8879 De ...

  6. CF109 C. Lucky Tree 并查集

    Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal re ...

  7. HDU 5606 tree 并查集

    tree 把每条边权是1的边断开,发现每个点离他最近的点个数就是他所在的连通块大小. 开一个并查集,每次读到边权是0的边就合并.最后Ans​i​​=size[findset(i)],size表示每个并 ...

  8. [Swust OJ 856]--Huge Tree(并查集)

    题目链接:http://acm.swust.edu.cn/problem/856/ Time limit(ms): 1000 Memory limit(kb): 10000 Description T ...

  9. Codeforces Round #363 (Div. 2)D. Fix a Tree(并查集)

    D. Fix a Tree time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

随机推荐

  1. raphael.js 给元素 hover 添加glow() 外发光

    用raphael.js 给 svg画布里面添加个元素,嗯就圓好了,男人一般都喜欢圆形的东西,比如xx ,  xxx , 还有xxx $(document).ready(function() { var ...

  2. HDU 2056 龟兔赛跑 (DP)

    题意:见题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2059 解题报告:以前一直没看出来这题是个DP题,知道是DP题就简单了 .首先要把起点和终点看成 ...

  3. vue实践中的狗血事件之:mock数据引发的血坑

    在项目实践中,遇到了这么一档子事 开发环境下,很快乐,什么事儿都没有,于是想打包一下测一下自动登录的效果 好家伙,一开始登录没有效,改来改去,最后连路由都切换不了, 明明开发环境下好好的,为毛打包后就 ...

  4. 对package.json的理解和学习

    一.初步理解 1. npm安装package.json时  直接转到当前项目目录下用命令npm install 或npm install --save-dev安装即可,自动将package.json中 ...

  5. 【腾讯云】自己搭建的腾讯云服务器JavaEE环境

    0.安装SSH登录 1.生成公钥对 ssh-keygen -t rsa -P '' -P表示密码,-P '' 就表示空密码,也可以不用-P参数,这样就要三车回车,用-P就一次回车.它在/home/ch ...

  6. win10下安装MinGW-w64 - for 32 and 64 bit Windows

    对于不经常使用c语言的同学来说,只需要安装MinGW-w64 - for 32 and 64 bit Windows,就可以使用GCC在命令行对c源码进行编译. 首先打开命令行检查自己是否已经安装了g ...

  7. Linux ALSA声卡驱动之五:移动设备中的ALSA(ASoC)

    转自http://blog.csdn.net/droidphone/article/details/7165482 1.  ASoC的由来 ASoC--ALSA System on Chip ,是建立 ...

  8. 错误的理解引起的bug async await 执行顺序

    今天有幸好碰到一个bug,让我知道了之前我对await async 的理解有点偏差. 错误的理解 之前我一直以为  await 后面的表达式,如果是直接返回一个具体的值就不会等待,而是继续执行asyn ...

  9. Cling项目demo实现Android+DLNA实现

    dlna多屏互动技术在Android和ios上面应用很广,所以自己为了学习,就官方提供的远吗进行了学习. http://4thline.org/projects/cling 由于是一个maven构建的 ...

  10. Java 语言多态性

    https://www.ibm.com/developerworks/cn/java/java-language-polymorphism/index.html 定义多态性 多态性是面向对象编程中的一 ...