UVALive 6910 Cutting Tree 并查集
Cutting Tree
题目连接:
Description
Tree in graph theory refers to any connected graph (of nodes and edges) which has no simple cycle,
while forest corresponds to a collection of one or more trees. In this problem, you are given a forest of
N nodes (of rooted trees) and K queries. Each query is in the form of:
• C x : remove the edge connecting node and its parent. If node has no parent, then ignore this
query.
• Q a b : output ‘YES’ if there is a path from node to node in the forest; otherwise, ‘NO’.
For example, let the initial forest is shown by Figure 1.
Figure 1. Figure 2.
Let’s consider the following queries (in order):
- Q 5 7 : output YES.
- C 2 : remove edge (2, 1) — the resulting forest is shown in Figure 2.
- Q 5 7 : output NO, as there is no path from node 5 to node 7 in Figure 2.
- Q 4 6 : output YES.
Input
The first line of input contains an integer T (T ≤ 50) denoting the number of cases. Each case begins
with two integers: N and K (1 ≤ N ≤ 20, 000; 1 ≤ K ≤ 5, 000) denoting the number of nodes in the
forest and the number of queries respectively. The nodes are numbered from 1 to N. The next line
contains N integers Pi (0 ≤ Pi ≤ N) denoting the parent of i-th node respectively. Pi = 0 means that
node i does not have any parent (i.e. it’s a root of a tree). You are guaranteed that the given input
corresponds to a valid forest. The next K lines represent the queries. Each query is in the form of ‘C
x’ or ‘Q a b’ (1 ≤ x, a, b ≤ N), as described in the problem statement above
Output
For each case, output ‘Case #X:’ in a line, where X is the case number starts from 1. For each ‘Q
a b’ query in the input, output either ‘YES’ or ‘NO’ (without quotes) in a line whether there is a path
from node a to node b in the forest.
Explanation for 2nd sample case:
The initial forest is shown in Figure 3 below.
- C 3 : remove edge (3, 2) — the resulting forest is shown in Figure 4.
- Q 1 2 : output YES.
- C 1 : remove edge (1, 2) — the resulting forest is shown in Figure 5.
- Q 1 2 : output NO as there is no path from node 1 to node 2 in Figure 5
Sample Input
4
7 4
0 1 1 2 2 2 3
Q 5 7
C 2
Q 5 7
Q 4 6
4 4
2 0 2 3
C 3
Q 1 2
C 1
Q 1 2
3 5
0 3 0
C 1
Q 1 2
C 3
C 1
Q 2 3
1 1
0
Q 1 1
Sample Output
Case #1:
YES
NO
YES
Case #2:
YES
NO
Case #3:
NO
YES
Case #4:
YES
Hint
题意
给你个森林,俩操作,1是砍掉与他父亲的连边,2是查询xy是否在同一个连通块里面
题解:
倒着做,砍边就变成连边了,然后并茶几莽一波就好了
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e4+7;
int cas = 0;
int fa[maxn];
int e[maxn];
int flag[maxn];
int a[maxn],b[maxn],c[maxn];;
int fi(int x){
if(x==fa[x])return x;
return fa[x]=fi(fa[x]);
}
void init(){
memset(flag,0,sizeof(flag));
}
void solve(){
init();
vector<int>ans;
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
fa[i]=i;
for(int i=1;i<=n;i++)
scanf("%d",&e[i]);
for(int i=1;i<=m;i++){
string s;cin>>s;
if(s[0]=='C'){
a[i]=1;
scanf("%d",&b[i]);
flag[b[i]]++;
}else{
a[i]=0;
scanf("%d%d",&b[i],&c[i]);
}
}
for(int i=1;i<=n;i++){
if(flag[i]==0&&e[i]!=0){
fa[fi(i)]=fi(e[i]);
}
}
for(int i=m;i>=1;i--){
if(a[i]==1){
flag[b[i]]--;
if(flag[b[i]]==0&&e[b[i]]!=0)
fa[fi(b[i])]=fi(e[b[i]]);
}else{
if(fi(b[i])==fi(c[i]))ans.push_back(1);
else ans.push_back(0);
}
}
for(int i=ans.size()-1;i>=0;i--){
if(ans[i])printf("YES\n");
else printf("NO\n");
}
}
int main(){
//freopen("1.txt","r",stdin);
int t;
scanf("%d",&t);
while(t--){
printf("Case #%d:\n",++cas);
solve();
}
return 0;
}
UVALive 6910 Cutting Tree 并查集的更多相关文章
- uva 6910 - Cutting Tree 并查集的删边操作,逆序
https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...
- UVALive 6910 Cutting Tree(离线逆序并查集)
[题目]:(地址:) http://acm.hust.edu.cn/vjudge/contest/view.action?cid=97671#problem/E [题意]: 给出多棵树和两类操作:操作 ...
- UVALive 6910 Cutting Tree(并查集应用)
总体来说,这个题给的时间比较长,样例也是比较弱的,别的方法也能做出来. 我第一次使用的是不合并路径的并查集,几乎是一种暴力,花了600多MS,感觉还是不太好的,发现AC的人很多都在300MS之内的过得 ...
- Hdu.1325.Is It A Tree?(并查集)
Is It A Tree? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- Is It A Tree?(并查集)
Is It A Tree? Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 26002 Accepted: 8879 De ...
- CF109 C. Lucky Tree 并查集
Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal re ...
- HDU 5606 tree 并查集
tree 把每条边权是1的边断开,发现每个点离他最近的点个数就是他所在的连通块大小. 开一个并查集,每次读到边权是0的边就合并.最后Ansi=size[findset(i)],size表示每个并 ...
- [Swust OJ 856]--Huge Tree(并查集)
题目链接:http://acm.swust.edu.cn/problem/856/ Time limit(ms): 1000 Memory limit(kb): 10000 Description T ...
- Codeforces Round #363 (Div. 2)D. Fix a Tree(并查集)
D. Fix a Tree time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...
随机推荐
- Codeforces 543 B. World Tour
http://codeforces.com/problemset/problem/543/B 题意: 给定一张边权均为1的无向图. 问至多可以删除多少边,使得s1到t1的最短路不超过l1,s2到t2的 ...
- 均方根值(RMS)+ 均方根误差(RMSE)+标准差(Standard Deviation)
均方根值(RMS)+ 均方根误差(RMSE)+标准差(Standard Deviation) 1.均方根值(RMS)也称作为效值,它的计算方法是先平方.再平均.然后开方. 2.均方根误差,它是观测值 ...
- [转载]使用 NuGet 管理项目库
原文:http://msdn.microsoft.com/zh-cn/magazine/hh547106.aspx 无论多么努力,Microsoft 也没办法提供开发人员所需要的每一个库. 虽然 Mi ...
- 原生JS不到30行,实现类似javascript MVC的功能-minTemplate
严格来讲不能说是MVC,应为模版里不能写逻辑语句. 灵感来源于我的上篇文字:<封装JSON数据转自定义HTML方法parseHTML>: 这里再封装一个简单方法,在保持原来的方便改变不大的 ...
- 因子分析(Factor analysis)
1.引言 在高斯混合和EM算法中,我们运用EM算法拟合混合模型,但是我们得考虑得需要多少的样本数据才能准确识别出数据中的多个高斯模型!看下面两种情况的分析: 第一种情况假如有 m 个样本,每个样本的维 ...
- Linux驱动技术(四) _异步通知技术【转】
转自:https://www.cnblogs.com/xiaojiang1025/p/6376561.html 异步通知的全称是"信号驱动的异步IO",通过"信号&quo ...
- elasticsearch RTF版本介绍
说明:elastic search官方版本没有集成中文分词以及各种插件,需要手动配置,手动编译jar,对Windows用户很不友好.下载地址:https://github.com/medcl/elas ...
- php的递归函数示例
递归函数太难理解了,写了一个示例放在这里方便没事的时候看一下. <?php /** *php递归函数示例 *(从1到100的累加和计算) * */ function summation($num ...
- React-Native 之 ListView使用
前言 学习本系列内容需要具备一定 HTML 开发基础,没有基础的朋友可以先转至 HTML快速入门(一) 学习 本人接触 React Native 时间并不是特别长,所以对其中的内容和性质了解可能会有所 ...
- 浅谈TCP拥塞控制算法
TCP通过维护一个拥塞窗口来进行拥塞控制,拥塞控制的原则是,只要网络中没有出现拥塞,拥塞窗口的值就可以再增大一些,以便把更多的数据包发送出去,但只要网络出现拥塞,拥塞窗口的值就应该减小一些,以减少注入 ...