Java中的锁(转)
Java中的锁
锁像synchronized同步块一样,是一种线程同步机制,但比Java中的synchronized同步块更复杂。因为锁(以及其它更高级的线程同步机制)是由synchronized同步块的方式实现的,所以我们还不能完全摆脱synchronized关键字(译者注:这说的是Java 5之前的情况)。
自Java 5开始,java.util.concurrent.locks包中包含了一些锁的实现,因此你不用去实现自己的锁了。但是你仍然需要去了解怎样使用这些锁,且了解这些实现背后的理论也是很有用处的。可以参考我对java.util.concurrent.locks.Lock的介绍,以了解更多关于锁的信息。
一个简单的锁
让我们从java中的一个同步块开始:
public class Counter{
private int count = 0;
public int inc(){
synchronized(this){
return ++count;
}
}
}
可以看到在inc()方法中有一个synchronized(this)代码块。该代码块可以保证在同一时间只有一个线程可以执行return ++count。虽然在synchronized的同步块中的代码可以更加复杂,但是++count这种简单的操作已经足以表达出线程同步的意思。
以下的Counter类用Lock代替synchronized达到了同样的目的:
public class Counter{
private Lock lock = new Lock();
private int count = 0;
public int inc(){
lock.lock();
int newCount = ++count;
lock.unlock();
return newCount;
}
}
lock()方法会对Lock实例对象进行加锁,因此所有对该对象调用lock()方法的线程都会被阻塞,直到该Lock对象的unlock()方法被调用。
这里有一个Lock类的简单实现:
public class Counter{
public class Lock{
private boolean isLocked = false;
public synchronized void lock()
throws InterruptedException{
while(isLocked){
wait();
}
isLocked = true;
}
public synchronized void unlock(){
isLocked = false;
notify();
}
}
注意其中的while(isLocked)循环,它又被叫做“自旋锁”。自旋锁以及wait()和notify()方法在线程通信这篇文章中有更加详细的介绍。当isLocked为true时,调用lock()的线程在wait()调用上阻塞等待。为防止该线程没有收到notify()调用也从wait()中返回(也称作虚假唤醒),这个线程会重新去检查isLocked条件以决定当前是否可以安全地继续执行还是需要重新保持等待,而不是认为线程被唤醒了就可以安全地继续执行了。如果isLocked为false,当前线程会退出while(isLocked)循环,并将isLocked设回true,让其它正在调用lock()方法的线程能够在Lock实例上加锁。
当线程完成了临界区(位于lock()和unlock()之间)中的代码,就会调用unlock()。执行unlock()会重新将isLocked设置为false,并且通知(唤醒)其中一个(若有的话)在lock()方法中调用了wait()函数而处于等待状态的线程。
锁的可重入性
Java中的synchronized同步块是可重入的。这意味着如果一个java线程进入了代码中的synchronized同步块,并因此获得了该同步块使用的同步对象对应的管程上的锁,那么这个线程可以进入由同一个管程对象所同步的另一个java代码块。下面是一个例子:
public class Reentrant{
public synchronized outer(){
inner();
}
public synchronized inner(){
//do something
}
}
注意outer()和inner()都被声明为synchronized,这在Java中和synchronized(this)块等效。如果一个线程调用了outer(),在outer()里调用inner()就没有什么问题,因为这两个方法(代码块)都由同一个管程对象(”this”)所同步。如果一个线程已经拥有了一个管程对象上的锁,那么它就有权访问被这个管程对象同步的所有代码块。这就是可重入。线程可以进入任何一个它已经拥有的锁所同步着的代码块。
前面给出的锁实现不是可重入的。如果我们像下面这样重写Reentrant类,当线程调用outer()时,会在inner()方法的lock.lock()处阻塞住。
public class Reentrant2{
Lock lock = new Lock();
public outer(){
lock.lock();
inner();
lock.unlock();
}
public synchronized inner(){
lock.lock();
//do something
lock.unlock();
}
}
调用outer()的线程首先会锁住Lock实例,然后继续调用inner()。inner()方法中该线程将再一次尝试锁住Lock实例,结果该动作会失败(也就是说该线程会被阻塞),因为这个Lock实例已经在outer()方法中被锁住了。
两次lock()之间没有调用unlock(),第二次调用lock就会阻塞,看过lock()实现后,会发现原因很明显:
public class Lock{
boolean isLocked = false;
public synchronized void lock()
throws InterruptedException{
while(isLocked){
wait();
}
isLocked = true;
}
...
}
一个线程是否被允许退出lock()方法是由while循环(自旋锁)中的条件决定的。当前的判断条件是只有当isLocked为false时lock操作才被允许,而没有考虑是哪个线程锁住了它。
为了让这个Lock类具有可重入性,我们需要对它做一点小的改动:
public class Lock{
boolean isLocked = false;
Thread lockedBy = null;
int lockedCount = 0;
public synchronized void lock()
throws InterruptedException{
Thread callingThread =
Thread.currentThread();
while(isLocked && lockedBy != callingThread){
wait();
}
isLocked = true;
lockedCount++;
lockedBy = callingThread;
}
public synchronized void unlock(){
if(Thread.curentThread() ==
this.lockedBy){
lockedCount--;
if(lockedCount == 0){
isLocked = false;
notify();
}
}
}
...
}
注意到现在的while循环(自旋锁)也考虑到了已锁住该Lock实例的线程。如果当前的锁对象没有被加锁(isLocked = false),或者当前调用线程已经对该Lock实例加了锁,那么while循环就不会被执行,调用lock()的线程就可以退出该方法(译者注:“被允许退出该方法”在当前语义下就是指不会调用wait()而导致阻塞)。
除此之外,我们需要记录同一个线程重复对一个锁对象加锁的次数。否则,一次unblock()调用就会解除整个锁,即使当前锁已经被加锁过多次。在unlock()调用没有达到对应lock()调用的次数之前,我们不希望锁被解除。
现在这个Lock类就是可重入的了。
锁的公平性
Java的synchronized块并不保证尝试进入它们的线程的顺序。因此,如果多个线程不断竞争访问相同的synchronized同步块,就存在一种风险,其中一个或多个线程永远也得不到访问权——也就是说访问权总是分配给了其它线程。这种情况被称作线程饥饿。为了避免这种问题,锁需要实现公平性。本文所展现的锁在内部是用synchronized同步块实现的,因此它们也不保证公平性。饥饿和公平中有更多关于该内容的讨论。
在finally语句中调用unlock()
如果用Lock来保护临界区,并且临界区有可能会抛出异常,那么在finally语句中调用unlock()就显得非常重要了。这样可以保证这个锁对象可以被解锁以便其它线程能继续对其加锁。以下是一个示例:
lock.lock();
try{
//do critical section code,
//which may throw exception
} finally {
lock.unlock();
}
这个简单的结构可以保证当临界区抛出异常时Lock对象可以被解锁。如果不是在finally语句中调用的unlock(),当临界区抛出异常时,Lock对象将永远停留在被锁住的状态,这会导致其它所有在该Lock对象上调用lock()的线程一直阻塞。
Java中的锁(转)的更多相关文章
- 深入介绍Java中的锁[原理、锁优化、CAS、AQS]
1.为什么要用锁? 锁-是为了解决并发操作引起的脏读.数据不一致的问题. 2.锁实现的基本原理 2.1.volatile Java编程语言允许线程访问共享变量, 为了确保共享变量能被准确和一致地更新, ...
- 探究Java中的锁
一.锁的作用和比较 1.Lock接口及其类图 Lock接口:是Java提供的用来控制多个线程访问共享资源的方式. ReentrantLock:Lock的实现类,提供了可重入的加锁语义 ReadWrit ...
- java 中的锁 -- 偏向锁、轻量级锁、自旋锁、重量级锁(转载)
之前做过一个测试,详情见这篇文章<多线程 +1操作的几种实现方式,及效率对比>,当时对这个测试结果很疑惑,反复执行过多次,发现结果是一样的: 1. 单线程下synchronized效率最高 ...
- Java 中的锁
Java中的锁分类 在读很多并发文章中,会提及各种各样锁如公平锁,乐观锁等等,这篇文章介绍各种锁的分类.介绍的内容如下: 公平锁/非公平锁 可重入锁 独享锁/共享锁 互斥锁/读写锁 乐观锁/悲观锁 分 ...
- java 中的锁 -- 偏向锁、轻量级锁、自旋锁、重量级锁
之前做过一个测试,详情见这篇文章<多线程 +1操作的几种实现方式,及效率对比>,当时对这个测试结果很疑惑,反复执行过多次,发现结果是一样的: 1. 单线程下synchronized效率最高 ...
- 深入理解Java中的锁
转载:https://www.jianshu.com/p/2eb5ad8da4dc Java中的锁 常见的锁有synchronized.volatile.偏向锁.轻量级锁.重量级锁 1.synchro ...
- JAVA 中无锁的线程安全整数 AtomicInteger介绍和使用
Java 中无锁的线程安全整数 AtomicInteger,一个提供原子操作的Integer的类.在Java语言中,++i和i++操作并不是线程安全的,在使用的时候, 不可避免的会用到synchron ...
- Java中的锁[原理、锁优化、CAS、AQS]
1.为什么要用锁? 锁-是为了解决并发操作引起的脏读.数据不一致的问题. 2.锁实现的基本原理 2.1.volatile Java编程语言允许线程访问共享变量, 为了确保共享变量能被准确和一致地更新, ...
- 史上最全 Java 中各种锁的介绍
更多精彩原创内容请关注:JavaInterview,欢迎 star,支持鼓励以下作者,万分感谢. 锁的分类介绍 乐观锁与悲观锁 锁的一种宏观分类是乐观锁与悲观锁.乐观锁与悲观锁并不是特定的指哪个锁(J ...
随机推荐
- [转载]使用SQL Server 2008的事务日志传送功能备份数据库(logshiping)
http://www.cnblogs.com/benbenkoala/archive/2009/03/11/1407793.html 引言:SQL Server的事务日志传送备份是仅次于镜像的高可靠性 ...
- ssh-copy-id 复制公钥到远程server
ssh-copy-id -i ~/.ssh/mykey.pub user@host 复制完成后可以测试: ssh -i ~/.ssh/mykey user@host
- 一个无锁消息队列引发的血案(四)——月:RingQueue(上) 自旋锁
目录 (一)起因 (二)混合自旋锁 (三)q3.h 与 RingBuffer (四)RingQueue(上) 自旋锁 (五)RingQueue(中) 休眠的艺术 (六)RingQueue(中) 休眠的 ...
- Python_oldboy_自动化运维之路_面向对象(十)
面向对象编程 OOP编程是利用“类”和“对象”来创建各种模型来实现对真实世界的描述,使用面向对象编程的原因一方面是因为它可以使程序的维护和扩展变得更简单,并且可以大大提高程序开发效率 ,另外,基于面向 ...
- [转] 使用moment.js轻松管理日期和时间
当前时间:moment().format('YYYY-MM-DD HH:mm:ss'); 2017-03-01 16:30:12 今天是星期几:moment().format('d'); 3 Unix ...
- 【LOJ】#2111. 「JLOI2015」战争调度
题解 记录一个数组dp[i][S][k]表示第i个点,它上面所有的点的状态(参军或者后勤)可以用状态S来表示,一共有k个平民参军的最大收益,当然数组开不下,可以用vector动态开 我们对于每个平民枚 ...
- 记在VMware虚拟机中对网站进行性能压力测试的经历
由于本次测试,仅仅是对静态网站首页进行的测试,所以没有涉及到MySQL数据库的性能监测 服务器基本配置 webbench测试工具 Linux上一款优秀的web性能压力测试工具.webbench最多可以 ...
- ubuntu下安装python3及常用爬虫库命令
爬虫常用库安装:
- jquery获取浏览器各种高宽
$(document).ready(function(){ alert($(window).height()); //浏览器当前窗口可视区域高度 alert($(document).height()) ...
- 007.Zabbix监控图形绘制
一 Graphs配置 1.1 新建图形 Graphs是将数据展示为图像,以视觉化形式展示,Graphs的配置保存在主机和模板中. Configuration---->Hosts---->G ...