题解

我们把圆拆成两个圆弧,按照圆弧的左右端点排序来增加和删除

那么我们把圆弧按照纵坐标排序,一定是两两不相交的

我们新加入一个圆的时候,找上圆弧的前驱,如果前驱是一个上圆弧,那么这个上圆弧所在的圆就是半径最小且包含它的圆,如果前驱是一个下圆弧,那么包含这个下圆弧的圆就是包含当前圆的圆

然后构建出一棵树,记录一下每个节点的深度就可以了

我们其实可以通过更改外部变量更改set的计算方式

代码

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define MAXN 200005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
}
db X;
struct Arc {
db x,y,r,on;int id;
friend bool operator < (const Arc &a,const Arc &b) {
db ay = a.on * sqrt(a.r * a.r - (X - a.x) * (X - a.x)) + a.y;
db by = b.on * sqrt(b.r * b.r - (X - b.x) * (X - b.x)) + b.y;
if(ay != by) return ay > by;
else return a.on > b.on;
}
};
struct circle {
int64 x,y,r;
}C[MAXN];
int N,fa[MAXN],tot,dep[MAXN];
vector<int> son[MAXN];
pii p[MAXN * 2];
multiset<Arc> S;
void Init() {
read(N);
for(int i = 1 ; i <= N ; ++i) {
read(C[i].x);read(C[i].y);read(C[i].r);
}
for(int i = 1 ; i <= N ; ++i) {
p[++tot] = mp(C[i].x - C[i].r,i);
p[++tot] = mp(C[i].x + C[i].r,i);
}
sort(p + 1,p + tot + 1);
}
void dfs(int u) {
int s = son[u].size();
for(int i = 0 ; i < s ; ++i) {
dep[son[u][i]] = dep[u] + 1;
dfs(son[u][i]);
}
}
void Solve() {
for(int i = 1 ; i <= tot ; ++i) {
int t = p[i].se;
X = p[i].fi;
if(p[i].fi == C[t].x - C[t].r) {
multiset<Arc>::iterator k = S.insert((Arc){(db)C[t].x,(db)C[t].y,(db)C[t].r,1,t});
if(k != S.begin()) {
--k;
if((*k).on > 0) fa[t] = (*k).id;
else fa[t] = fa[(*k).id];
}
S.insert((Arc){(db)C[t].x,(db)C[t].y,(db)C[t].r,-1,t});
}
else {
S.erase((Arc){(db)C[t].x,(db)C[t].y,(db)C[t].r,1,t});
S.erase((Arc){(db)C[t].x,(db)C[t].y,(db)C[t].r,-1,t});
}
}
for(int i = 1 ; i <= N ; ++i) son[fa[i]].pb(i);
int64 ans = 0;
dfs(0);
for(int i = 1 ; i <= N ; ++i) {
if(dep[i] & 1) ans += C[i].r * C[i].r;
else ans -= C[i].r * C[i].r;
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
}

【BZOJ】4561: [JLoi2016]圆的异或并的更多相关文章

  1. bzoj 4561: [JLoi2016]圆的异或并

    Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面 积并.异或面积并为:当一片区域在奇数个圆内则计算其面积,当一片区域在偶数个 ...

  2. BZOJ 4561 [JLoi2016]圆的异或并 ——扫描线

    扫描线的应用. 扫描线就是用数据结构维护一个相对的顺序不变,带修改的东西. 通常只用于一次询问的情况. 抽象的看做一条垂直于x轴直线从左向右扫过去. 这道题目要求求出所有圆的异或并. 所以我们可以求出 ...

  3. BZOJ 4561: [JLoi2016]圆的异或并 扫描线 + set

    看题解看了半天...... Code: #include<bits/stdc++.h> #define maxn 200010 #define ll long long using nam ...

  4. bzoj4561: [JLoi2016]圆的异或并 圆的扫描线

    地址:http://www.lydsy.com/JudgeOnline/problem.php?id=4561 题目: 4561: [JLoi2016]圆的异或并 Time Limit: 30 Sec ...

  5. BZOJ4561 JLoi2016 圆的异或并 【扫描线】【set】*

    BZOJ4561 JLoi2016 圆的异或并 Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面积并.异或面积并为:当一片区 ...

  6. 【BZOJ4561】[JLoi2016]圆的异或并 扫描线

    [BZOJ4561][JLoi2016]圆的异或并 Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面积并.异或面积并为:当一 ...

  7. bzoj4561: [JLoi2016]圆的异或并

    Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面 积并.异或面积并为:当一片区域在奇数个圆内则计算其面积,当一片区域在偶数个 ...

  8. [JLOI2016]圆的异或并

    Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面积并.异或面积并为:当一片区域在奇数个圆内则计算其面积,当一片区域在偶数个圆 ...

  9. BZOJ4561 JLOI2016圆的异或并(扫描线+平衡树)

    考虑一条扫描线从左到右扫过这些圆.观察某一时刻直线与这些圆的交点,可以发现构成一个类似括号序列的东西,括号的包含关系与圆的包含关系是相同的.并且当扫描线逐渐移动时,括号间的相对顺序不变.于是考虑用se ...

随机推荐

  1. 【刷题】LOJ 6008 「网络流 24 题」餐巾计划

    题目描述 一个餐厅在相继的 \(n\) 天里,每天需用的餐巾数不尽相同.假设第 \(i\) 天需要 \(r_i\) 块餐巾.餐厅可以购买新的餐巾,每块餐巾的费用为 \(P\) 分:或者把旧餐巾送到快洗 ...

  2. HGOI20180823 三校联考

    首测:220qwq(算差的好吧) 后来改了一个地方:300qwq(算慢的好吧) std被踩qwq 注意:输入数据第一行忘记输入n,亲脑补 题解: 多项式除法(若最后除出的答案为1那么就是成功),对于f ...

  3. 图像处理之规则裁剪(Resize)

    1 图像裁剪 在实际工作中,经常需要根据研究工作要求对图像进行裁剪(Subset Image),按照实际图像分幅裁剪的过程,可以将图像分幅裁剪分为两种类型:规则分幅裁剪(Rectangle Subse ...

  4. 弹指之间 -- Prerequisites

    CHAPTER 1 吉他的分类 Electric Guitar Classic Guitar Folk Guitar CHAPTER 2 吉他各部名称 CHAPTER 3 选购吉他 琴颈弯曲程度 木头 ...

  5. SQL Server 2012中LEAD函数简单分析

    LEAD函数简单点说,就是把下一行的某列数据提取到当前行来显示,看示例更能解释清楚,先看测试用脚本 DECLARE @TestData TABLE( ID INT IDENTITY(1,1), Dep ...

  6. Spring cloud 微服务架构 Eureka篇

    1 服务发现 ## 关于服务发现 在微服务架构中,服务发现(Service Discovery)是关键原则之一.手动配置每个客户端或某种形式的约定是很难做的,并且很脆弱.Spring Cloud提供了 ...

  7. python操作txt文件中数据教程[3]-python读取文件夹中所有txt文件并将数据转为csv文件

    python操作txt文件中数据教程[3]-python读取文件夹中所有txt文件并将数据转为csv文件 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 python操作txt文件中 ...

  8. bzoj千题计划295:bzoj3140: [Hnoi2013]消毒

    http://www.lydsy.com/JudgeOnline/problem.php?id=3140 如果只有两维,那就是二分图最小点覆盖 现在是三维,但是a*b*c<=5000,说明最小的 ...

  9. ubuntu中mysql中文乱码及用python3.x调用

    首先声明解决方法也是网上找来的,知识自己记下来以防以后用到.   ubuntu版本是14.04使用apt-get命令安装mysql sudo apt-get install mysql-server ...

  10. JMS学习(二)之ActiveMQ

    1,ActiveMQ是Apache实现的基于JMS的一个消息服务器.下面记录ActiveMQ的一些基本知识. 2,ActiveMQ connectors:ActiveMQ providesconnec ...