BZOJ5019 SNOI2017遗失的答案(容斥原理)
显然存在方案的数一定是L的因数,考虑对其因子预处理答案,O(1)回答。
考虑每个质因子,设其在g中有x个,l中有y个,则要求所有选中的数该质因子个数都在[x,y]中,且存在数的质因子个数为x、y。对于后一个限制,显然可以简单地容斥,即[x,y]-[x+1,y]-[x,y-1]+[x+1,y-1],枚举这个至多是48的,这个取最大值时因子个数是28。暴力枚举数数即可。复杂度总之O(能过)。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
#define P 1000000007
#define ll long long
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,g,l,u,m,prime[],cnt[][],d[],ans[],p[][],q[][],a[],tot,t,sum;
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
void get(int k,int s)
{
if (k>t) {sum++;return;}
ll x=ksm(prime[k],cnt[][k]);
for (int i=cnt[][k];i<=cnt[][k];i++)
{
if (s*x<=n) get(k+,s*x);else break;
x=1ll*x*prime[k];
}
}
void build(int k,int s)
{
if (k>t)
{
p[++tot][]=s;
for (int i=;i<=t;i++) p[tot][i]=a[i];
return;
}
ll x=ksm(prime[k],cnt[][k]);
for (int i=cnt[][k];i<=cnt[][k];i++)
{
a[k]=i;
if (s*x<=n) build(k+,s*x);else break;
x=1ll*x*prime[k];
}
}
void calc(int op)
{
//for (int i=1;i<=t;i++) cout<<prime[i]<<' '<<cnt[0][i]<<' '<<cnt[1][i]<<endl;cout<<endl;
sum=;get(,);
for (int i=;i<=tot;i++)
{
bool flag=;
for (int j=;j<=t;j++)
if (p[i][j]<cnt[][j]||p[i][j]>cnt[][j]) {flag=;break;}
if (flag)
{
ans[i]+=op*ksm(,sum-);
if (ans[i]<) ans[i]+=P;if (ans[i]>=P) ans[i]-=P;
}
}
}
void dfs(int k,int op)
{
if (k>t) {calc(op);return;}
dfs(k+,op);
cnt[][k]++;dfs(k+,-op);
cnt[][k]--;dfs(k+,op);
cnt[][k]--;dfs(k+,-op);
cnt[][k]++;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5019.in","r",stdin);
freopen("bzoj5019.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),g=read(),l=read(),m=read();
if (l%g) {for (int i=;i<=m;i++) printf("0\n");return ;}
u=l;
for (int i=;i*i<=u;i++)
if (u%i==)
{
prime[++t]=i,cnt[][t]=;u/=i;
while (u%i==) cnt[][t]++,u/=i;
}
if (u>) prime[++t]=u,cnt[][t]=;
u=g;
for (int i=;i<=t;i++)
while (u%prime[i]==) u/=prime[i],cnt[][i]++;
build(,);
for (int i=;i<=tot;i++) d[i]=p[i][];
sort(d+,d+tot+);
for (int i=;i<=tot;i++)
for (int j=;j<=t;j++)
q[i][j]=p[i][j];
for (int i=;i<=tot;i++)
{
int x=lower_bound(d+,d+tot+,q[i][])-d;
for (int j=;j<=t;j++) p[x][j]=q[i][j];
}
dfs(,);
while (m--)
{
int x=read(),y=lower_bound(d+,d+tot+,x)-d;
if (d[y]!=x) {printf("0\n");continue;}
else printf("%d\n",ans[y]);
}
return ;
}
BZOJ5019 SNOI2017遗失的答案(容斥原理)的更多相关文章
- BZOJ5019[Snoi2017]遗失的答案——FWT+状压DP
题目描述 小皮球在计算出答案之后,买了一堆皮肤,他心里很开心,但是一不小心,就忘记自己买了哪些皮肤了.==|||万 幸的是,他还记得他把所有皮肤按照1-N来编号,他买来的那些皮肤的编号(他至少买了一款 ...
- bzoj5019: [Snoi2017]遗失的答案
Description 小皮球在计算出答案之后,买了一堆皮肤,他心里很开心,但是一不小心,就忘记自己买了哪些皮肤了.==|||万 幸的是,他还记得他把所有皮肤按照1-N来编号,他买来的那些皮肤的编号( ...
- 【BZOJ5019】[SNOI2017]遗失的答案(FWT,动态规划)
[BZOJ5019][SNOI2017]遗失的答案(FWT,动态规划) 题面 BZOJ 题解 发现\(10^8\)最多分解为不超过\(8\)个本质不同质数的乘积. 而\(gcd\)和\(lcm\)分别 ...
- bzoj 5019: [Snoi2017]遗失的答案【dp+FWT】
满足GL的组合一定包含GL每个质因数最大次幂个最小次幂,并且能做限制这些数不会超过600个 然后质因数最多8个,所以可以状压f[s1][s2]为选s1集合满足最大限制选s2集合满足最小限制 dfs一下 ...
- bzoj 5019 [Snoi2017]遗失的答案
题面 https://www.lydsy.com/JudgeOnline/problem.php?id=5019 题解 如果L不是G的倍数 答案为0 下面考虑G|L的情况 将G,L质因数分解 设$L= ...
- LOJ2257 SNOI2017 遗失的答案 容斥、高维前缀和
传送门 数字最小公倍数为\(L\)的充分条件是所有数都是\(L\)的约数,而\(10^8\)内最多约数的数的约数也只有\(768\)个.所以我们先暴力找到所有满足是\(L\)的约数.\(G\)的倍数的 ...
- luogu P5366 [SNOI2017]遗失的答案
luogu 首先gcd为\(G\),lcm为\(L\),有可能出现的数(指同时是\(G\)的因数以及是\(L\)的倍数)可以发现只有几百个.如果选出的数要能取到gcd,那么对于每种质因子,都要有一个数 ...
- 洛谷$P5366\ [SNOI2017]$遗失的答案 数论+$dp$
正解:数论$dp$ 解题报告: 传送门$QwQ$ 考虑先质因数分解.所以$G$就相当于所有系数取$min$,$L$就相当于所有系数取$max$ 这时候考虑,因为数据范围是$1e8$,$1e8$内最多有 ...
- [SNOI2017]遗失的答案
题目 首先\(G,L\)肯定会满足\(G|L\),否则直接全部输出\(0\) 之后我们考虑一下能用到的质因数最多只有\(8\)个 同时我们能选择的数\(x\)肯定是\(L\)的约数,还得是\(G\)的 ...
随机推荐
- keepalived 做全端口映射
global_defs { lvs_id BACKUP } vrrp_sync_group VGM { group { VI_1 } } vrrp_inst ...
- 用cloudmonkey批量创建虚拟机
需求: 1.root磁盘120G(这个在做镜像的时候已经做好) 2.需要用到share网络 3.添加500G磁盘并且挂载早虚拟机上面 #!/bin/bashzone_id=d530fee4-413a- ...
- Hbase shell 输入无法使用退格键删除解决办法
今天在进入hbase shell终端进行数据查询和添加时,发现输入的命令无法撤回,现将解决办法写下: 1.使用Ctrl + Backspace或Shift + Backspace组合键删除 2.(Se ...
- Winniechen’s test1
https://winniechen.cn/wp-content/uploads/2018/08/Winniechens_test_1.rar 放水练习赛,主要考察最短路,DP,状态压缩等知识点 题解 ...
- [Lydsy1805月赛]口算训练 BZOJ5358
分析: 没想到这道题还能二分查找... 这题主席树的话,裸的很显然...我们将每一个数分解质因数,之后建一个可持久化权值线段树维护[L,R]区间内的每一种质因子的个数,分解质因数的话,可以选择用线筛, ...
- Docker-compose部署gitlab中文版
目录 Docker-compose部署gitlab 1.安装Docker 2.安装Docker-compose 3.安装Gitlab Docker-compose部署gitlab 1.安装Docker ...
- React学习-React初识
一.前言 为什么要去学习React呢,关于前端三大框架Angular,Vue,React其实都得去学吧,因为大家都在用啊,大家都再谈论啊,面试什么的都要求,没办法,曾几何时,大家都说求求大佬们别坑新了 ...
- [摘抄]从 GitHub 身上学到的 3 个创业经验
1.找一个大问题去解决 让 Git 更容易使用是 GitHub 的目标,但它从来不是 GitHub 的最终目标.GitHub 的真正目标是让协作和编写软件变得更容易.世界上每一个软件开发者都在努力解决 ...
- Python对Selenium调用浏览器进行封装包括启用无头浏览器,及对应的浏览器配置文件
""" 获取浏览器 打开本地浏览器 打开远程浏览器 关闭浏览器 打开网址 最大化 最小化 标题 url 刷新 Python对Selenium封装浏览器调用 ------b ...
- PAT甲题题解-1002. A+B for Polynomials (25)-多项式相加
注意两点:1.系数也有可能加起来为负!!!一开始我if里面判断为>0导致有样例没过...2.如果最后所有指数的系数都为0,输出一个0即可,原本以为是输出 1 0 0.0... #include ...