GPU架构

SM(Streaming Multiprocessors)是GPU架构中非常重要的部分,GPU硬件的并行性就是由SM决定的。

以Fermi架构为例,其包含以下主要组成部分:

  • CUDA cores
  • Shared Memory/L1Cache
  • Register File
  • Load/Store Units
  • Special Function Units
  • Warp Scheduler

GPU中每个SM都设计成支持数以百计的线程并行执行,并且每个GPU都包含了很多的SM,所以GPU支持成百上千的线程并行执行,当一个kernel启动后,thread会被分配到这些SM中执行。大量的thread可能会被分配到不同的SM,但是同一个block中的thread必然在同一个SM中并行执行。

CUDA采用Single Instruction Multiple Thread(SIMT)的架构来管理和执行thread,这些thread以32个为单位组成一个单元,称作warps。warp中所有线程并行的执行相同的指令。每个thread拥有它自己的instruction address counter和状态寄存器,并且用该线程自己的数据执行指令。

SIMT和SIMD(Single Instruction, Multiple Data)类似,SIMT应该算是SIMD的升级版,更灵活,但效率略低,SIMT是NVIDIA提出的GPU新概念。二者都通过将同样的指令广播给多个执行官单元来实现并行。一个主要的不同就是,SIMD要求所有的vector element在一个统一的同步组里同步的执行,而SIMT允许线程们在一个warp中独立的执行。SIMT有三个SIMD没有的主要特征:

  • 每个thread拥有自己的instruction address counter
  • 每个thread拥有自己的状态寄存器
  • 每个thread可以有自己独立的执行路径

更细节的差异可以看这里。

一个block只会由一个SM调度,block一旦被分配好SM,该block就会一直驻留在该SM中,直到执行结束。一个SM可以同时拥有多个block。下图显示了软件硬件方面的术语:

需要注意的是,大部分thread只是逻辑上并行,并不是所有的thread可以在物理上同时执行。这就导致,同一个block中的线程可能会有不同步调。

并行thread之间的共享数据回导致竞态:多个线程请求同一个数据会导致未定义行为。CUDA提供了API来同步同一个block的thread以保证在进行下一步处理之前,所有thread都到达某个时间点。不过,我们是没有什么原子操作来保证block之间的同步的。

同一个warp中的thread可以以任意顺序执行,active warps被SM资源限制。当一个warp空闲时,SM就可以调度驻留在该SM中另一个可用warp。在并发的warp之间切换是没什么消耗的,因为硬件资源早就被分配到所有thread和block,所以该新调度的warp的状态已经存储在SM中了。

SM可以看做GPU的心脏,寄存器和共享内存是SM的稀缺资源。CUDA将这些资源分配给所有驻留在SM中的thread。因此,这些有限的资源就使每个SM中active warps有非常严格的限制,也就限制了并行能力。所以,掌握部分硬件知识,有助于CUDA性能提升。

Fermi架构

Fermi是第一个完整的GPU计算架构。

  • 512个accelerator cores即所谓CUDA cores(包含ALU和FPU)
  • 16个SM,每个SM包含32个CUDA  core
  • 六个384位 GDDR5 DRAM,支持6GB global on-board memory
  • GigaThread engine(图左侧)将thread blocks分配给SM调度
  • 768KB L2 cache
  • 每个SM有16个load/store单元,允许每个clock cycle为16个thread(即所谓half-warp,不过现在不提这个东西了)计算源地址和目的地址
  • Special function units(SFU)用来执行sin cosine 等
  • 每个SM两个warp scheduler两个instruction dispatch unit,当一个block被分配到一个SM中后,所有该block中的thread会被分到不同的warp中。
  • Fermi(compute capability 2.x)每个SM同时可处理48个warp共计1536个thread。

每个SM由一下几部分组成:

  • 执行单元(CUDA cores)
  • 调度分配warp的单元
  • shared memory,register file,L1 cache

Kepler 架构

Kepler相较于Fermi更快,效率更高,性能更好。

  • 15个SM
  • 6个64位memory controller
  • 192个单精度CUDA cores,64个双精度单元,32个SFU,32个load/store单元(LD/ST)
  • 增加register file到64K
  • 每个Kepler的SM包含四个warp scheduler、八个instruction dispatchers,使得每个SM可以同时issue和执行四个warp。
  • Kepler K20X(compute capability 3.5)每个SM可以同时调度64个warp共计2048个thread。

Dynamic Parallelism

Dynamic Parallelism是Kepler的新特性,允许GPU动态的启动新的Grid。有了这个特性,任何kernel内都可以启动其它的kernel了。这样直接实现了kernel的递归以及解决了kernel之间数据的依赖问题。也许D3D中光的散射可以用这个实现。

Hyper-Q

Hyper-Q是Kepler的另一个新特性,增加了CPU和GPU之间硬件上的联系,使CPU可以在GPU上同时运行更多的任务。这样就可以增加GPU的利用率减少CPU的闲置时间。Fermi依赖一个单独的硬件上的工作队列来从CPU传递任务给GPU,这样在某个任务阻塞时,会导致之后的任务无法得到处理,Hyper-Q解决了这个问题。相应的,Kepler为GPU和CPU提供了32个工作队列。

不同arch的主要参数对比

CUDA ---- GPU架构(Fermi、Kepler)的更多相关文章

  1. NVIDIA GPU架构与原理分析(一)——GPU简介与主流Fermi、Kepler架构GPU概述

    1 GPU简介 图形处理单元GPU英文全称Graphic Processing Unit,GPU是相对于CPU的一个概念,NVIDIA公司在1999年发布GeForce256图形处理芯片时首先提出GP ...

  2. 【并行计算-CUDA开发】CUDA编程——GPU架构,由sp,sm,thread,block,grid,warp说起

    掌握部分硬件知识,有助于程序员编写更好的CUDA程序,提升CUDA程序性能,本文目的是理清sp,sm,thread,block,grid,warp之间的关系.由于作者能力有限,难免有疏漏,恳请读者批评 ...

  3. 适用于CUDA GPU的Numba 随机数生成

    适用于CUDA GPU的Numba 随机数生成 随机数生成 Numba提供了可以在GPU上执行的随机数生成算法.由于NVIDIA如何实现cuRAND的技术问题,Numba的GPU随机数生成器并非基于c ...

  4. 适用于CUDA GPU的Numba例子

    适用于CUDA GPU的Numba例子 矩阵乘法 这是使用CUDA内核的矩阵乘法的简单实现: @cuda.jit def matmul(A, B, C): """Perf ...

  5. 剖析虚幻渲染体系(12)- 移动端专题Part 2(GPU架构和机制)

    目录 12.4 移动渲染技术要点 12.4.1 Tile-based (Deferred) Rendering 12.4.2 Hierarchical Tiling 12.4.3 Early-Z 12 ...

  6. 并行计算基础(1)(GPU架构介绍)

    一.常用术语 Task:任务.可以完整得到结果的一个程序,一个程序段或若干个程序段.例如搬砖. Parallel Task:并行任务.可以并行计算的任务.多个人搬砖. Serial Execution ...

  7. Gradient Boosting, Decision Trees and XGBoost with CUDA ——GPU加速5-6倍

    xgboost的可以参考:https://xgboost.readthedocs.io/en/latest/gpu/index.html 整体看加速5-6倍的样子. Gradient Boosting ...

  8. 奉献pytorch 搭建 CNN 卷积神经网络训练图像识别的模型,配合numpy 和matplotlib 一起使用调用 cuda GPU进行加速训练

    1.Torch构建简单的模型 # coding:utf-8 import torch class Net(torch.nn.Module): def __init__(self,img_rgb=3,i ...

  9. CUDA && GPU中dim3介绍

随机推荐

  1. mybatis的一对一,一对多查询,延迟加载,缓存介绍

    一对一查询 需求 查询订单信息关联查询用户信息 sql语句 /*通过orders关联查询用户使用user_id一个外键,只能关联查询出一条用户记录就可以使用内连接*/ SELECT orders.*, ...

  2. 声明式API replica controller vs replica set 对比

    1.在命令式API中,你可以直接发出服务器要执行的命令,例如: “运行容器”.“停止容器”等. 在声明性API中,你声明系统要执行的操作,系统将不断向该状态驱动. 可以想象成手动驾驶和自动驾驶系统.( ...

  3. iOS11 Xcode 9 按住command 单击 恢复到从前(直接跳转到定义)

    iOS11 Xcode 9  按住command 单击 恢复到从前(直接跳转到定义)   2017年9月20日,苹果如期推送 Xcode 9 和 iOS 11的更新. Xcode 9正式版与之前bet ...

  4. day05今日学习总结:字符串类型

    昨日学习复习: 数据类型: 有序.无序 有序:可以根据索引查找的数据 可变不可变 可变:在值变的情况下,id不变,证明原值是在改变的 不可变:在值变的情况下,id也跟着变,证明不是在改原值. 今日学习 ...

  5. Django进阶(2)

    1.在D盘创建mysite工程项目:  django-admin startproject mysite manage.py ----- Django项目里面的工具,通过它可以调用django she ...

  6. Usaco2012-2013 金组 题解 (暂缺Hill walk以及Figue eight)

    https://files.cnblogs.com/files/Winniechen/usaco2012-2013.pdf 做的不是很好,还请见谅! 如果有什么疑问,可以QQ上找我. QQ号:1967 ...

  7. Liunx-cp命令

    1. 复制当前目录的test文件夹 到/201904 目录 出现如下截图问题是因为test目录下还有文件,所以得加-r,使用递归拷贝.我现在用这个命令拷贝文件都加-r了,不管有文件还是没文件 2.复制 ...

  8. VB CompactDatabase 压缩/修复数据库

    Option Explicit Private Sub Command1_Click() On Error GoTo err Dim DbEngine, dbFile As String dbFile ...

  9. 20155211 网络攻防技术 Exp7 网络欺诈防范

    20155211 网络攻防技术 Exp7 网络欺诈防范 实践内容 本实践的目标理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法.具体实践有 (1)简单应用SET工具建立冒名网站 (2)e ...

  10. 20155217《网络对抗》Exp02 后门原理与实践

    20155217<网络对抗>Exp02 后门原理与实践 实验要求 使用netcat获取主机操作Shell,cron启动. 使用socat获取主机操作Shell,任务计划启动. 使用MSF ...