在XZY&XZZ巨佬的引领下,一枚蒟蒻终于啃动了这道题。。。。。。

这次还是第一次写LCT维护边权,还要化边为点,思路乱七八糟的,写起来也不顺手,还好调了许久终于AC啦。

贪心排序按一个关键字从小到大枚举边,维护另一个关键字的最小生成树,这样的思路真是太巧妙啦。(然而没有题解的滋养我什么也干不了)

只是关于写法上面,我又有些和Dalao们不一样的地方(因为是自己乱写的)。

link和cut好像脱离了传统意义,本蒟蒻用了link(x)表示将编号为x的边加入用LCT维护的最小生成树,cut(x)反之。

link其实是要连两次,因为要严格深度递增,就让边的一个端点的父亲指向这个代表边的点(轻边),再让代表边的点的父亲指向边的另一个端点(还是轻边)。当然啦,深度大的那个点要先makeroot,不然会影响正确性。

cut就是断两次了,把代表边的点下面那个点(深度大的)access,splay(代表边的点),此时两个端点一个深度小,在左边,一个深度大,在右边,左右儿子全断掉就OK。

其实常规link,cut没问题啊,我也不知道什么时候脑袋短路搞出这种不成熟的写法,不过稍微算算,实际操作量少了些,比起两遍link或cut常数会小一点。

update:这种link和cut可能存在问题。。。还是要写两遍(不知道当时怎么过的)

不过说到常数又留下一个败笔——这一题较特殊,维护连通性可以用并查集,避免了大量findroot(虽然不会T而已)。只是我没有写。findroot真慢呀!以后还是要记住这个小细节。

代码还是放一下

#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
#define R register int
#define I inline void
#define lc c[x][0]
#define rc c[x][1]
#define G ch=getchar()
#define min2(x,y) if(x>y)x=y;
const int N=200000,P=131072;
//P是用来区分点和边的,边的编号在LCT中不变,点的编号全部加上P(为压常用了这样一个数,加上位或运算)
int f[N],c[N][2],mx[N];
bool r[N];
I in(R&z){
register char G;
while(ch<'-')G;
z=ch&15;G;
while(ch>'-')z*=10,z+=ch&15,G;
}
struct EDGE{
int u,v,a,b;
inline bool operator<(EDGE x)const{
return a<x.a;
}
I read(){
in(u);in(v);in(a);in(b);
u|=P;v|=P;//编号变化
}
}e[N];//边放进结构体
inline bool nroot(R x){
return c[f[x]][0]==x||c[f[x]][1]==x;
}
I pushup(R x){
mx[x]=x;
if(e[mx[x]].b<e[mx[lc]].b)mx[x]=mx[lc];
if(e[mx[x]].b<e[mx[rc]].b)mx[x]=mx[rc];//三种情况都要看
}
I pushdown(R x){
if(r[x]){
R t=lc;lc=rc;rc=t;
r[lc]^=1;r[rc]^=1;r[x]=0;
}
}
I pushall(R x){//懒得手写栈,直接用函数堆栈(逃
if(nroot(x))pushall(f[x]);
pushdown(x);
}
I rotate(R x){
R y=f[x],z=f[y],k=c[y][1]==x,w=c[x][!k];
if(nroot(y))c[z][c[z][1]==y]=x;c[x][!k]=y;c[y][k]=w;
f[w]=y;f[y]=x;f[x]=z;
pushup(y);
}
I splay(R x){
R y=x;
pushall(x);
while(nroot(x)){
if(nroot(y=f[x]))
rotate((c[y][0]==x)^(c[f[y]][0]==y)?x:y);
rotate(x);
}
pushup(x);
}
I access(R x){
for(R y=0;x;x=f[y=x])
splay(x),rc=y,pushup(x);
}
I mroot(R x){
access(x);splay(x);
r[x]^=1;
}
inline int froot(R x){
access(x);splay(x);
while(lc)x=lc;
return x;
}
I link(R x){
R y=e[x].u,z=e[x].v;
mroot(z);
f[f[z]=x]=y;
}//非正常link与cut
I cut(R x){
access(e[x].v);splay(x);
lc=rc=f[lc]=f[rc]=0;
pushup(x);
}
int main(){
R n,m,i,y,z,ans=999999;//ans给极大值
in(n);in(m);
for(i=1;i<=m;++i)e[i].read();
sort(e+1,e+m+1);
for(i=1;i<=m;++i)
{
if((y=e[i].u)==(z=e[i].v))continue;
mroot(y);
if(y!=froot(z))link(i);//不联通,直接连
else if(e[i].b<e[mx[z]].b)cut(mx[z]),link(i);//联通,但有更小的边替换
mroot(1|P);
if((1|P)==froot(n|P))min2(ans,e[i].a+e[mx[n|P]].b);//1与n联通就更新答案
}
printf("%d\n",ans==999999?-1:ans);
return 0;
}

洛谷P2387 [NOI2014]魔法森林(LCT)的更多相关文章

  1. 洛谷P2387 [NOI2014]魔法森林(LCT)

    魔法森林 题目传送门 解题思路 把每条路按照\(a\)的值从小到大排序.然后用LCT按照b的值维护最小生成树,将边按照顺序放入.如果\(1\)到\(n\)有了一条路径,就更新最小答案.这个过程就相当于 ...

  2. 洛谷 P2387 [NOI2014]魔法森林 解题报告

    P2387 [NOI2014]魔法森林 题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2 ...

  3. 洛谷P2387 [NOI2014]魔法森林(lct维护最小生成树)

    题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…, ...

  4. 洛谷P2387 [NOI2014]魔法森林(LCT,Splay)

    在XZY&XZZ巨佬的引领下,一枚蒟蒻终于啃动了这道题...... 这次还是第一次写LCT维护边权,还要化边为点,思路乱七八糟的,写起来也不顺手,还好调了许久终于AC啦. 贪心排序按一个关键字 ...

  5. 洛谷 2387 NOI2014魔法森林 LCT

    [题解] 我们先把边按照$a$值从小到大排序,并按照这个顺序加边. 如果当前要加入的边连接的两点$u$与$v$已经是连通的,那么直接加入这条边就会出现环.这时我们需要删除这个环中$b$值最大的边.因此 ...

  6. P2387 [NOI2014]魔法森林 LCT维护最小生成树

    \(\color{#0066ff}{ 题目描述 }\) 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 ...

  7. 洛谷2387 NOI2014魔法森林(LCT维护最小生成树)

    本题是运用LCT来维护一个最小生成树. 是一个经典的套路 题目中求的是一个\(max(a_i)+max(b_i)\)尽可能小的路径. 那么这种的一个套路就是,先按照一维来排序,然后用LCT维护另一维 ...

  8. [Luogu P2387] [NOI2014]魔法森林 (LCT维护边权)

    题面 传送门:https://www.luogu.org/problemnew/show/P2387 Solution 这题的思想挺好的. 对于这种最大值最小类的问题,很自然的可以想到二分答案.很不幸 ...

  9. 【洛谷P2387】魔法森林

    题目大意:给定一个 N 个点,M 条边的无向图,边有两个边权 a, b,求从 1 号节点到 N 号节点路径的两个权值和的最大值最小是多少. 题解: 对于有两个属性的结构的最优化问题,可以考虑先按照其中 ...

随机推荐

  1. R 语言-基础

    R语言 1997年成为GNU项目 开源免费 R官方网址 www.r-project.org R是数据分析领域的语言小巧灵活,通过扩展包来增强功能绘图功能代码简单 开发环境R + RStudio 1.数 ...

  2. 如何使用jstack分析线程状态

    背景 记得前段时间,同事说他们测试环境的服务器cpu使用率一直处于100%,本地又没有什么接口调用,为什么会这样?cpu使用率居高不下,自然是有某些线程一直占用着cpu资源,那又如何查看占用cpu较高 ...

  3. 20155302《网络对抗》Exp7 网络欺诈防范

    20155302<网络对抗>Exp7 网络欺诈防范 实验内容 (1)简单应用SET工具建立冒名网站 (1分) (2)ettercap DNS spoof (1分) (3)结合应用两种技术, ...

  4. Vue 使用细节收集

    JSX 中 on 开头的属性名 在用 elementui 中的 el-upload 的时候,他们组件中有一个属性 on-change ,也不知道谁想出来的属性名,太扯淡了,非要 on 开头,我开始的代 ...

  5. pandas:根据行间差值进行数据合并

    1. 问题描述 在处理用户上网数据时,用户的上网行为数据之间存在时间间隔,按照实际情况,若时间间隔小于阈值(next_access_time_app),则可把这几条上网行为合并为一条行为数据:若时间间 ...

  6. [转]JVM系列三:JVM参数设置、分析

    不管是YGC还是Full GC,GC过程中都会对导致程序运行中中断,正确的选择不同的GC策略,调整JVM.GC的参数,可以极大的减少由于GC工作,而导致的程序运行中断方面的问题,进而适当的提高Java ...

  7. Asp.Net_上传文件(ftp、webClient、webService)

    第一种:通过FTP来上传文件 首先,在另外一台服务器上设置好FTP服务,并创建好允许上传的用户和密码,然后,在ASP.NET里就可以直接将文件上传到这台 FTP 服务器上了.代码如下: <%@ ...

  8. 能帮我们学习吉他的音乐软件——Guitar Pro

    Guitar Pro是一款十分好用的吉他软件,也是目前广大音乐爱好者最喜欢的多音轨的音谱编辑软件.支持MIDI.MusicXML.PTB.GTP等多种格式文件的导入/导出. Guitar Pro 7. ...

  9. 博客配置Racket代码字体

    我想在博客园的文章中插入Racket代码,但是博客园的代码块和高亮都太难看了,如果能把scribble/manual的CSS文件中的Racket代码块的配置拿出来就可以有漂亮的Racket代码高亮了, ...

  10. Apache Ignite 学习笔记(四): Ignite缓存冗余备份策略

    Ignite的数据网格是围绕着基于内存的分布式key/value存储能力打造的.当初技术选型的时候,决定用Ignite也是因为虽然同样是key/value存储,它有着和其他key/value存储系统不 ...